Advertisement

Immunotherapy in Hodgkin Lymphoma and Other CD30+ Lymphomas

  • Raghuveer RanganathanEmail author
  • Thomas C. Shea
Chapter

Abstract

CD30 is a member of the tumor necrosis factor receptor superfamily and is a transmembrane receptor which was initially observed to be the target of the Ki-1 antibody binding to Reed-Sternberg cells in Hodgkin lymphoma (Stein et al., Blood 66(4):848–858, 1985). Since it has high expression within Hodgkin lymphoma (HL) and anaplastic large cell lymphoma (ALCL), variable expression in other non-Hodgkin lymphoma subgroups, and limited expression in nonmalignant tissues, CD30 has become the focus for innovative therapeutic advances (Horie, Semin Immunol 10(6):457–470, 1998). This chapter will focus on first reviewing the standard of care for CD30+ lymphomas and then describing the recent developments in CD30-directed immunotherapy.

Keywords

CD30 Hodgkin lymphoma Anaplastic large cell lymphoma Brentuximab Chimeric antigen receptor T cells PD-1 checkpoint inhibition 

References

  1. 1.
    Stein H, Mason D, Gerdes J, et al. The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood. 1985;66(4):848–58.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Horie R, Watanabe T. CD30: expression and function in health and disease. Semin Immunol. 1998;10(6):457–70.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hodgkin Lymphoma [Internet]. National Cancer Institute, Bethesda. Available from: https://seer.cancer.gov/statfacts/html/hodg.html.
  4. 4.
    Grufferman S, Cole P, Smith PG, Lukes RJ. Hodgkin’s disease in siblings. N Engl J Med. 1977;296(5):248–50.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cozen W, Katz J, Mack TM. Risk patterns of Hodgkin’s disease in Los Angeles vary by cell type. Cancer Epidemiol Biomark Prev. 1992;1(4):261.Google Scholar
  6. 6.
    Swerdlow SH, Campo E, Harris NL, Jaffe ES, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. In: Press I, editor. . Lyon: International Agency for Research on Cancer; 2008.Google Scholar
  7. 7.
    Gopas J, Stern E, Zurgil U, Ozer J, et al. Reed-Sternberg cells in Hodgkin’s lymphoma present features of cellular senescence. Cell Death Dis. 2016;7(11):e2457.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schmitz R, Stanelle J, Hansmann ML, Küppers R. Pathogenesis of classical and lymphocyte–predominant Hodgkin lymphoma. Annu Rev Pathol. 2009;4:151–74.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Marafioti T, Hummel M, Foss HD, Laumen H, et al. Hodgkin and Reed-Sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood. 2000;95(4):1443–50.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Stein H, Marafioti T, Foss HD, Laumen H, et al. Down-regulation of BOB.1/OBF.1 and Oct2 in classical Hodgkin disease but not in lymphocyte predominant Hodgkin disease correlates with immunoglobulin transcription. Blood. 2001;97(2):496–501.CrossRefGoogle Scholar
  11. 11.
    Hjalgrim H, Engels E. Infectious aetiology of Hodgkin and non-Hodgkin lymphomas: a review of the epidemiological evidence. J Intern Med. 2008;264(6):537–48.CrossRefGoogle Scholar
  12. 12.
    Anagnostopoulos I, Herbst H, Niedobitek G, Stein H. Demonstration of monoclonal EBV genomes in Hodgkin’s disease and Ki-1- positive anaplastic large cell lymphoma by combined Southern blot and in situ hybridization. Blood. 1989;74(2):810–6.CrossRefGoogle Scholar
  13. 13.
    Bechtel D, Kurth J, Unkel C, Küppers R. Transformation of BCR-deficient germinal-center B cells by EBV supports a major role of the virus in the pathogenesis of Hodgkin and posttransplantation lymphomas. Blood. 2005;106(13):4345–50.CrossRefGoogle Scholar
  14. 14.
    Kilger E, Kieser A, Baumann M, Hammerschmidt W. Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J. 1998;17(6):1700–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Joos S, Küpper M, Ohl S, von Bonin F, et al. Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res. 2000;60(3):549–52.PubMedGoogle Scholar
  16. 16.
    Martin-Subero JI, Gesk S, Harder L, Sonoki T, et al. Recurrent involvement of the REL and BCL11A loci in classical Hodgkin lymphoma. Blood. 2002;99(4):1474–7.CrossRefGoogle Scholar
  17. 17.
    Bargou RC, Emmerich F, Krappman D, Bommert K, et al. Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest. 1997;100(12):2961–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Otto C, Giefing M, Massow A, Vater I, et al. Genetic lesions of the TRAF3 and MAP3K14 genes in classical Hodgkin lymphoma. Br J Haematol. 2012;157(6):702–8.CrossRefGoogle Scholar
  19. 19.
    Schmitz R, Hansmann M, Bohle V, Martin-Subero JI, et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med. 2009;206(5):981–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Weniger MA, Melzner I, Menz CK, Wegener S, et al. Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene. 2006;25(18):2679–84.CrossRefGoogle Scholar
  21. 21.
    Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–22.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Baitsch L, Fuertes-Marraco S, Legat A, Meyer C, Speiser DE. The three main stumbling blocks for anticancer T cells. Trends Immunol. 2012;33(7):364–72.CrossRefGoogle Scholar
  23. 23.
    Ishida T, Ishii T, Inagaki A, et al. Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res. 2006;66:5716–22.CrossRefGoogle Scholar
  24. 24.
    van den Berg A, Visser L, Poppema S. High expression of the CC chemokine TARC in Reed-Sternberg cells: a possible explanation for the characteristic T-cell infiltrate in Hodgkin’s lymphoma. Am J Pathol. 1999;154:1685–91.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Green MR, Monti S, Rodig SJ, Juszczynski P, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Roemer MG, Advani R, Ligon AH, Natkunam Y, et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol. 2016;34(23):2690–7.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Carey CD, Gusenleitner D, Lipschitz M, Roemer MGM, et al. Topological analysis reveals a PD-L1 associated immuno-pretective niche for Reed-Sternberg cells in Hodgkin lymphoma. Blood. 2017;130:2420–30.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ansell SM, Lesokhin A, Borrello I, Halwani A, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9.CrossRefGoogle Scholar
  29. 29.
    Younes A, Santoro A, Shipp M, Zinzani PL, et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17(9):1283–94.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chen R, Zinzani P, Fanale MA, Armand P, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol. 2017;35(19):2125–32.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Atkinson K, Austin D, McElwain TJ, Peckham MJ. Alcohol pain in Hodgkin’s disease. Cancer. 1976;37:895–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    El-Galaly TC, d’Amore F, Mylam KJ, et al. Routine bone marrow biopsy has little or no therapeutic consequence for positron emission tomography/computed tomography-staged treatment-naïve patients with Hodgkin lymphoma. J Clin Oncol. 2012;30(36):4508–14.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cheson BD. Role of functional imaging in the management of lymphoma. J Clin Oncol. 2011;29(19):1844–54.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cheson BD, Fisher R, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hoppe RT, Advani R, Ai WZ, et al. Hodgkin lymphoma, version 2.2015. J Natl Compr Canc Netw. 2015;13(5):554–86.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tubiana M, Henry-Amar M, Carde P, et al. Toward comprehensive management tailored to prognostic factors of patients with clinical stages I and II in Hodgkin’s disease: the EORTC Lymphoma Group controlled clinical trials; 1964–1987. Blood. 1989;73(1):47–56.CrossRefGoogle Scholar
  37. 37.
    Panel NCCNA. Hodgkin lymphoma: NCCN. 2017. Available from: https://www.nccn.org/professionals/physician_gls/pdf/hodgkins.pdf.
  38. 38.
    Hasenclever D, Diehl V. A prognostic score for advanced Hodgkin’s disease. International prognostic factors project on advanced Hodgkin’s disease. N Engl J Med. 1998;339(21):1506–14.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gallamini A, Hutchings M, Rigacci L, et al. Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report front a joint Italian-Danish study. J Clin Oncol. 2007;25(24):3746–52.CrossRefGoogle Scholar
  40. 40.
    Press OW, Li H, Schoder H, Strauss DJ, et al. US intergroup trial of response-adapted therapy for stage III to IV Hodgkin lymphoma using early interim fluorodeoxyglucose–positron emission tomography imaging: Southwest Oncology Group S0816. J Clin Oncol. 2016;34(17):2020–7.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bonnadonna G, Zucali R, Monfardini S, de Lena M, Uslenghi C. Combination chemotherapy of Hodgkin’s disease with adriamycin, bleomycin, vinblastine, and imidazole carboxamide versus MOPP. Cancer. 1975;36(1):252–9.CrossRefGoogle Scholar
  42. 42.
    Diehl V, Franklin J, Pfreundschuh M, Lathan B, et al. Standard and increased-dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin’s disease. N Engl J Med. 2003;348(24):2386–95.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ballova V, Rüffer J, Haverkamp H, Pfistner B, et al. A prospectively randomized trial carried out by the German Hodgkin Study Group (GHSG) for elderly patients with advanced Hodgkin’s disease comparing BEACOPP baseline and COPP-ABVD (GHSG HD9 study). Ann Oncol. 2005;16(1):124–31.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Engert A, Diehl V, Franklin J, Lohri A, et al. Escalated-dose BEACOPP in the treatment of patients with advanced-stage Hodgkin’s lymphoma: 10 years of follow-up of the GHSG HD9 study. J Clin Oncol. 2009;27(27):4548–54.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sieniawski M, Reineke T, Nogova L, Josting A, et al. Fertility in male patients with advanced Hodgkin lymphoma treated with BEACOPP: a report of the German Hodgkin Study Group (GHSG). Blood. 2008;111(1):71–6.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Armitage JO. Early stage Hodgkin’s lymphoma. N Engl J Med. 2008;363(7):653–62.CrossRefGoogle Scholar
  47. 47.
    Brenner H, Gondos A, Pulte D. Ongoing improvement in long-term survival of patients with Hodgkin disease at all ages and recent catch-up of older patients. Blood. 2008;111(6):2977–83.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Engert A, Plütschow A, Eich HT, Lohri A, et al. Reduced treatment intensity in patients with early-stage Hodgkin’s lymphoma. N Engl J Med. 2010;363(7):640–52.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Meyer RM, Gospodarowicz M, Connors JM, Pearcey RG, et al. ABVD alone versus radiation-based therapy in limited-stage Hodgkin’s lymphoma. N Engl J Med. 2012;366(5):399–408.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Eich HT, Diehl V, Görgen H, Pabst T, et al. Intensified chemotherapy and dose-reduced involved-field radiotherapy in patients with early unfavorable Hodgkin’s lymphoma: final analysis of the German Hodgkin Study Group HD11 trial. J Clin Oncol. 2010;28(27):4199–206.CrossRefGoogle Scholar
  51. 51.
    Viviani S, Zinzani P, Rambaldi A, Brusamolino E, et al. ABVD versus BEACOPP for Hodgkin’s lymphoma when high-dose salvage is planned. N Engl J Med. 2011;365(3):203–12.CrossRefGoogle Scholar
  52. 52.
    Carde P, Karrasch M, Fortpied C, et al. Eight cycles of ABVD versus four cycles of BEACOPPescalated plus four cycles of BEACOPPbaseline in stage III to IV, international prognostic score >/= 3, high-risk Hodgkin lymphoma: first results of the phase III EORTC 20012 intergroup trial. J Clin Oncol. 2016;34(17):2028–36.CrossRefGoogle Scholar
  53. 53.
    Johnson P, Federico M, Kirkwood A, Fosså A, et al. Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N Engl J Med. 2016;374(25):2419–29.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Moskowitz CH, Nimer S, Zelenetz AD, Trippett T, et al. A 2-step comprehensive high-dose chemoradiotherapy second-line program for relapsed and refractory Hodgkin disease: analysis by intent to treat and development of a prognostic model. Blood. 2001;97(3):616–23.CrossRefGoogle Scholar
  55. 55.
    Bartlett NL, Niedzwiecki D, Johnson JL, Friedberg JW, et al. Gemcitabine, vinorelbine, and pegylated liposomal doxorubicin (GVD), a salvage regimen in relapsed Hodgkin’s lymphoma: CALGB 59804. Ann Oncol. 2007;18(6):1071–9.CrossRefGoogle Scholar
  56. 56.
    Kuruvilla J, Nagy T, Pintilie M, Tsang R, et al. Similar response rates and superior early progression-free survival with gemcitabine, dexamethasone, and cisplatin salvage therapy compared with carmustine, etoposide, cytarabine, and melphalan salvage therapy prior to autologous stem cell transplantation for recurrent or refractory Hodgkin lymphoma. Cancer. 2006;106(2):353–60.CrossRefGoogle Scholar
  57. 57.
    Santoro A, Mazza R, Pulsoni A, Re A, et al. Bendamustine in combination with gemcitabine and vinorelbine is an effective regimen as induction chemotherapy before autologous stem-cell transplantation for relapsed or refractory Hodgkin lymphoma: final results of a multicenter phase II study. J Clin Oncol. 2016;34(27):3293–9.CrossRefGoogle Scholar
  58. 58.
    Brandwein JM, Callum J, Sutcliffe SB, Scott JG, et al. Evaluation of cytoreductive therapy prior to high dose treatment with autologous bone marrow transplantation in relapsed and refractory Hodgkin’s disease. Bone Marrow Transplant. 1990;5(2):99.PubMedGoogle Scholar
  59. 59.
    Schmitz N, Pfistner B, Sextro M, Sieber M, et al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin’s disease: a randomised trial. Lancet Oncol. 2002;359(9323):2065–71.CrossRefGoogle Scholar
  60. 60.
    Linch DC, Winfield D, Goldstone AH, McMillan A, et al. Dose intensification with autologous bone-marrow transplantation in relapsed and resistant Hodgkin’s disease: results of a BNLI randomised trial. Lancet Oncol. 1993;341(8852):1051–4.CrossRefGoogle Scholar
  61. 61.
    Moskowitz CH, Matasar M, Zelenetz AD, Nimer SD, et al. Normalization of pre-ASCT, FDG-PET imaging with second-line, non-cross-resistant, chemotherapy programs improves event-free survival in patients with Hodgkin lymphoma. Blood. 2012;119(7):1665–70.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Falini B, Pileri S, Zinzani PL, et al. ALK+ lymphoma: clinico-pathological findings and outcome. Blood. 1999;93(8):2697–706.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Surveillance E, and End Results Program. SEER cancer statistics factsheets: anaplastic large cell lymphoma. Bethesda: National Cancer Institute; 2015.Google Scholar
  64. 64.
    Gascoyne RD, Aoun P, Wu D, Chhanabhai M, Skinnider BF, Greiner TC, et al. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood. 1999;93(11):3913–21.CrossRefGoogle Scholar
  65. 65.
    Savage KJ, Harris NL, Vose JM, Ullrich F, Jaffe ES, Connors JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood. 2008;111(12):5496–504.CrossRefGoogle Scholar
  66. 66.
    Sibon D, Fournier M, Brière J, Lamant L, et al. Long-term outcome of adults with systemic anaplastic large-cell lymphoma treated within the Groupe d’Etude des Lymphomes de l’Adulte trials. J Clin Oncol. 2012;30(32):3939–46.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Fisher RI, Gaynor E, Dahlberg S, et al. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin’s lymphoma. N Engl J Med. 1993;328(14):1002–6.CrossRefGoogle Scholar
  68. 68.
    Schmitz N, Trümper L, Ziepert M, et al. Treatment and prognosis of mature T-cell and NK-cell lymphoma: an analysis of patients with T-cell lymphoma treated in studies of the German High-Grade Non-Hodgkin Lymphoma Study Group. Blood. 2012;116(18):3418–25.CrossRefGoogle Scholar
  69. 69.
    Slack GW, Steidl C, Sehn LH, et al. CD30 expression in de novo diffuse large B-cell lymphoma: a population-based study from British Columbia. Br J Haematol. 2014;167(5):608–17.CrossRefGoogle Scholar
  70. 70.
    Sabattini E, Pizzi M, Tabanelli V, et al. CD30 expression in peripheral T-cell lymphomas. Haematologica. 2013;98(8):81–2.CrossRefGoogle Scholar
  71. 71.
    Ansell SM, Horwitz S, Engert A, et al. Phase I/II study of an anti-CD30 monoclonal antibody (MDX-060) in Hodgkin’s lymphoma and anaplastic large-cell lymphoma. J Clin Oncol. 2007;25(19):2764–9.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Younes A, Bartlett N, Leonard JP, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363(19):1812–21.CrossRefGoogle Scholar
  73. 73.
    Younes A, Gopal A, Smith SE, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30(18):2183–9.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Gopal AK, Chen R, Smith SE, et al. Durable remissions in a pivotal phase 2 study of brentuximab vedotin in relapsed or refractory Hodgkin lymphoma. Blood. 2015;125(8):1236–43.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Moskowitz CH, Nademanee A, Masszi T, et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2015;385(9980):1853–62.CrossRefGoogle Scholar
  76. 76.
    Administration UFaD. Brentuximab vedotin information. In: Administration USFaD, editor. Silver Spring: US FDA; 2015.Google Scholar
  77. 77.
    O’Connor OA, Lue J, Sawas A, Amengual JE, et al. Brentuximab vedotin plus bendamustine in relapsed or refractory Hodgkin’s lymphoma: an international, multicentre, single-arm, phase 1–2 trial. Lancet Oncol. 2018;19(2):257–66.CrossRefGoogle Scholar
  78. 78.
    LaCasce AS, Bociek RG, Sawas A, Caimi P, Agura E, Matous J, et al. Brentuximab vedotin plus bendamustine: a highly active first salvage regimen for relapsed or refractory Hodgkin lymphoma. Blood. 2018;132(1):40–8.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Younes A, Connors J, Park SI, Fanale M, et al. Brentuximab vedotin combined with ABVD or AVD for patients with newly diagnosed Hodgkin’s lymphoma: a phase 1, open-label, dose-escalation study. Lancet Oncol. 2013;14(13):1348–56.CrossRefGoogle Scholar
  80. 80.
    Connors JM, Jurczak W, Straus DJ, Ansell SM, et al. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N Engl J Med. 2018;378(4):331–44.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Fanale MA, Horwitz SM, Forero-Torres A, Bartlett NL, Advani RH, Pro B, et al. Five-year outcomes for frontline brentuximab vedotin with CHP for CD30-expressing peripheral T-cell lymphomas. Blood. 2018;131(19):2120–4.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Horwitz S, O’Connor OA, Pro B, Illidge T, Fanale M, Advani R, et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet (London, England). 2019;393(10168):229–40.CrossRefGoogle Scholar
  83. 83.
    Dotti G, Gottschalk S, Savoldo B, Brenner M. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev. 2014;257(1):107–26.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Kochenderfer JN, Feldman S, Zhao Y, Xu H, et al. Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J Immunother. 2009;32(7):689–702.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    van der Stegen SJ, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov. 2015;14(7):499–509.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Till BG, Jensen M, Wang J, Chen EY, et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood. 2008;112(6):2261–71.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Jensen MC, Popplewell L, Cooper LJ, DiGiusto D, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Transplantation. 2010;16(9):1245–56.Google Scholar
  88. 88.
    Geldres C, Savoldo B, Dotti G. Chimeric antigen receptor-redirected T cells return to the bench. Semin Immunol. 2016;28(1):3–9.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Kochenderfer JN, Dudley M, Feldman SA, Wilson WH, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709–20.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Brentjens RJ, Riviere I, Park JH, Davila ML, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011;118(18):4817–28.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Kalos M, Levine B, Porter DL, Katz S, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Brudno JN, Kochenderfer J. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol. 2018;15(1):31–46.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Gattinoni L, Finkelstein S, Klebanoff CA, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 2005;202(7):907–12.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Savoldo B, Rooney C, Di Stasi A, Abken H, et al. Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30zeta artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood. 2007;110(7):2620–30.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Ramos CA, Ballard B, Zhang H, Dakhova O, et al. Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes. J Clin Invest. 2017;127(9):3462–71.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Wang CM, Wu Z, Wang Y, Guo YL, et al. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin lymphoma: an open-label phase I trial. Clin Cancer Res. 2017;23(5):1156–66.CrossRefGoogle Scholar
  97. 97.
    Di Stasi A, De Angelis B, Rooney CM, Zhang L, et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood. 2009;113(25):6392–402.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Baumeister SH, Freeman G, Dranoff G, Sharpe AH. Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol. 2016;34:539–73.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Medicine, Division of Hematology and OncologyUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations