Advertisement

Red Dwarfs pp 171-218 | Cite as

Atmospheric Circulation and Climate

  • David S. Stevenson
Chapter

Abstract

As above, so below. Although the fervor of research builds over the impact of the geosphere on planetary habitability, considerably more research is going into understanding how planetary atmospheres may influence the same property. This chapter expands upon, improves the accuracy of, and produces viable models of atmospheres for planets with different orbital distances from red dwarf stars.

References

  1. Abbot, D. S., Cowan, N. B., & Ciesla, F. J. (2012). Indication of insensitivity of planetary weathering behavior and habitable zone to surface land fraction. The Astrophysical Journal, 756, 178.  https://doi.org/10.1088/0004-637X/756/2/178.ADSCrossRefGoogle Scholar
  2. Armstrong, J. C., Barnes, R., Domagal-Goldman, S., Breiner, J., Quinn, T. R., & Meadows, V. S. (2014). Effects of extreme obliquity variations on the habitability of exoplanets. Astrobiology, 14(4), 46. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150008371.pdf.CrossRefGoogle Scholar
  3. Arnold, N. P. (2014). Atmospheric superrotation in warm earth climates. Doctoral dissertation, Harvard University. http://nrs.harvard.edu/urn-3:HUL.InstRepos:11744437.
  4. Barnes, R. (2017). Tidal locking of habitable exoplanets. https://arxiv.org/pdf/1708.02981.pdf.
  5. Barnes, R., Mullins, K., Goldblatt, C., Meadows, V. S., Kasting, J. F., & Heller, R. (2013). Tidal Venuses: Triggering a climate catastrophe via tidal heating. Astrobiology, 13, 225–250. https://arxiv.org/pdf/1203.5104.pdf.ADSCrossRefGoogle Scholar
  6. Basa, J. (2007). Lee cyclogenesis. Seminar, University of Ljubljana. http://mafija.fmf.uni-lj.si/seminar/files/2006_2007/Lee_cyclogenesis_-_Joze_Basa.pdf.
  7. Boutle, I. A., Mayne, N. J., Drummond, B., Manners, J., Goyal, J., Lambert, F. H., Acreman, D. M., & Earnshaw, P. D. (2017). Exploring the climate of Proxima B with the Met Office Unified Model. https://arxiv.org/pdf/1702.08463.pdf.
  8. Carone, L., Keppens, R., & Decin, L. (2015). Connecting the dots II: Phase changes in the climate dynamics of tidally locked terrestrial exoplanets. Preprint. http://arxiv.org/pdf/1508.00419v1.pdf.
  9. Clift, P. D., Hodges, K. V., Heslop, D., Hannigan, R., Long, H. V., & Calves, G. (2008). Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geoscience, 1, 875–880.  https://doi.org/10.1038/ngeo351. http://tectonics.asu.edu/page5/files/page5_1.pdf.ADSCrossRefGoogle Scholar
  10. Cullum, J., Stevens, D., & Joshi, M. (2014). The importance of planetary rotation period for ocean heat transport. Astrobiology, 14(8), 645–650.  https://doi.org/10.1089/ast.2014.1171. https://www.liebertpub.com/doi/10.1089/ast.2014.1171.ADSCrossRefGoogle Scholar
  11. Cullum, J., Stevens, D. P., & Joshi, M. M. (2016). Importance of ocean salinity for climate and habitability. PNAS, 113(16), 4278–4283.  https://doi.org/10.1073/pnas.1522034113.ADSCrossRefGoogle Scholar
  12. Cuntz, M., von Bloh, W., Schröder, K.-P., Bounama, C., & Franck, S. (2011) Habitability of super-earth planets around main-sequence stars including red giant branch evolution: Models based on the integrated system approach. https://arxiv.org/pdf/1107.5714.pdf.
  13. Donnadieu, Y., Goddéris, Y., Ramstein, G., Nédélec, A., & Meert, J. (2004). A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff. Nature, 428, 303–306.ADSCrossRefGoogle Scholar
  14. Edson, A., Lee, S., Bannon, P., Kasting, J. F., & Pollard, D. (2011). Atmospheric circulations of terrestrial planets orbiting low-mass stars. Icarus, 212(1), 1–13. http://www.meteo.psu.edu/~sxl31/papers/ICARUS.pdf.ADSCrossRefGoogle Scholar
  15. Faherty, J. K., Tinney, C. G., Skemer, A., & Monson, A. J. (2014) Indications of water clouds in the coldest known brown dwarf. Preprint. http://arXiv:1408.4671v2.pdf.
  16. Foley, B. J. (2015). The role of plate tectonic-climate coupling and exposed land area in the development of habitable climates on rocky planets. https://arxiv.org/pdf/1509.00427.pdf.
  17. Forget, F. & Leconte, J. (2013). Possible climates on terrestrial exoplanets. https://arxiv.org/ftp/arxiv/papers/1311/1311.3101v2.
  18. Frierson, D. M. W. (2007). Convectively coupled Kelvin waves in an idealized moist general circulation model. Journal of the Atmospheric Sciences, 64, 2076–2090.  https://doi.org/10.1175/JAS3945.1.ADSCrossRefGoogle Scholar
  19. Fujii, Y., Del Genio, A. D., & Amundsen, D. S. (2017). NIR-driven moist upper atmospheres of synchronously rotating temperate terrestrial exoplanets. https://arxiv.org/pdf/1704.05878.pdf.
  20. Geerts, B. & Linacre, E. (1999). Potential vorticity and isentropic charts. http://www-das.uwyo.edu/~geerts/cwx/notes/chap12/pot_vort.html
  21. Gerbier, N., Koschmieder, H., & Zierep, J. (1960). Technical note No. 34 the airflow over mountains. Report of a working group of the Commission for Aerology prepared by P. Queney, Chairman – G.A. Corby. Edited and coordinated by M.A ALARA of the WMO Secretariat. https://library.wmo.int/opac/doc_num.php?explnum_id=1734.
  22. Gohm, A., & Mayr, G. J. (2004). Hydraulic aspects of föhn winds in an Alpine valley. Quarterly Journal of the Royal Meteorological Society, 130, 449–480.  https://doi.org/10.1256/qj.03.28.ADSCrossRefGoogle Scholar
  23. Haqq-Misra, J. & Kopparapu, R. K. (2014). Geothermal heating enhances atmospheric asymmetries on synchronously rotating planets. https://arxiv.org/ftp/arxiv/papers/1410/1410.0186v1.
  24. Haqq-Misra, J., Kopparapu, R. K., & Wolf, E. T. (2017). Why do we find ourselves around a yellow star instead of a red star? International Journal of Astrobiology, 17(01), 77–86.  https://doi.org/10.1017/s1473550417000118. https://arxiv.org/ftp/arxiv/papers/1705/1705.07813.pdf.ADSCrossRefGoogle Scholar
  25. Haqq-Misra, J., Wolf, E. T., Joshi, M., Zhang, X., & Kopparapu, R. K. (2017). Demarcating circulation regimes of synchronously rotating terrestrial planets near the inner edge of the habitable zone. https://arxiv.org/ftp/arxiv/papers/1710/1710.00435.pdf.
  26. Haqq-Misra, J., Wolf, E. T., Joshi, M., Zhang, X., & Kopparapu, R. K. (2018). Demarcating circulation regimes of synchronously rotating terrestrial planets within the habitable zone. The Astrophysical Journal, 852(2), 67.  https://doi.org/10.3847/1538-4357/aa9f1f.ADSCrossRefGoogle Scholar
  27. Haqq-Misra, J., Kopparapu, R. K., Batalha, N. E., Harman, C. E., & Kasting, J. F. (2016). Limit cycles can reduce the width of the habitable zone. The Astrophysical Journal, 827, 120.  https://doi.org/10.3847/0004-637X/827/2/120. https://arxiv.org/pdf/1605.07130v1.pdf.ADSCrossRefGoogle Scholar
  28. Heath, M. J., Doyle, L. R., Joshi, M. M., & Haberle, R. M. (1999). Habitability of planets around red dwarf stars. Origins of Life and Evolution of the Biosphere, 29, 405–424. Preprint. http://www.as.utexas.edu/astronomy/education/spring02/scalo/heath.pdf.ADSCrossRefGoogle Scholar
  29. Heng, K. & Kopparla, P. (2012). On the stability of super earth atmospheres. https://archive.org/details/arxiv-1203.1922.
  30. Hu, Y., & Yang, J. (2014). Role of ocean heat transport in climates of tidally-locked exoplanets around M dwarf stars. PNAS, 111(2), 629–634.ADSCrossRefGoogle Scholar
  31. Hu, Y., Yang, D., & Yang, J. (2008). Blocking systems over an aqua planet. Geophysical Research Letters, 35, L19818.  https://doi.org/10.1029/2008GL035351.ADSCrossRefGoogle Scholar
  32. Joshi, M. M., Haberle, R. M., & Reynolds, R. T. (1997). Simulations of the atmospheres of synchronously rotating terrestrial planets orbiting M dwarfs: Conditions for atmospheric collapse and the implications for habitability. Icarus, 129, 450–465.ADSCrossRefGoogle Scholar
  33. Joshi, M. M., & Haberle, R. M. (2011). Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone. Astrobiology, 12(1), 3–8.  https://doi.org/10.1089/ast.2011.0668. https://arxiv.org/ftp/arxiv/papers/1110/1110.4525.pdf.ADSCrossRefGoogle Scholar
  34. Kadoya, S., & Tajika, E. (2016). Evolutionary tracks of the climate of earth-like planets around different mass stars. The Astrophysical Journal Letters, 825, L21. (5pp).  https://doi.org/10.3847/2041-8205/825/2/L21.ADSCrossRefGoogle Scholar
  35. Kennedy, M., Mrofka, D., & von der Borch, C. (2008). Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature, 453, 642–645.  https://doi.org/10.1038/nature06961.ADSCrossRefGoogle Scholar
  36. Kopparapu, R. (2013). A revised estimate of the occurrence rate of terrestrial planets in the habitable zones around Kepler M-dwarfs. The Astrophysical Journal, 767(1), 5.ADSCrossRefGoogle Scholar
  37. Kopparapu, R. (2016). A catalog of Kepler habitable zone exoplanet candidates. The Astrophysical Journal, 830(1), 1.  https://doi.org/10.3847/0004-637x/830/1/1.ADSCrossRefGoogle Scholar
  38. Kopparapu, R. K., Hébrard, E., Belikov, R., et al. (2018). Exoplanet classification and yield estimates for direct imaging missions. The Astrophysical Journal, 856(2), 122.  https://doi.org/10.3847/1538-4357/aab205.ADSCrossRefGoogle Scholar
  39. Kopparapu, R. K., Ramirez, R., Kasting, J. F., et al. (2013). Erratum: habitable zones around main-sequence stars: New estimates (2013, ApJ, 765, 131). The Astrophysical Journal, 770, 82.  https://doi.org/10.1088/0004-637X/770/1/82.ADSCrossRefGoogle Scholar
  40. Kopparapu, R. K., Wolf, E. T. Haqq-Misra, J., Kasting, J. Y. J. F., Meadows, V., Terrien, R., & Mahadevan, S. (2016). The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models. https://arxiv.org/ftp/arxiv/papers/1602/1602.05176v1.pdf.
  41. Kopparapu, R. K., Wolf, E. T., Arney, G., Batalha, N. E., Haqq-Misra, J., Grimm, S. L., & Heng, K. (2017). Habitable moist atmospheres on terrestrial planets near the inner edge of the habitable zone around M-dwarfs. The Astrophysical Journal, 845(1), 5.  https://doi.org/10.3847/1538-4357/aa7cf9. https://arxiv.org/ftp/arxiv/papers/1705/1705.10362v2.ADSCrossRefGoogle Scholar
  42. Krishnamurti, T. N., Sahu, D. K., Kumar, V., Krishnamurti, R., Ghosh, T., et al. (2017). Extreme orographic rains from streams of moist marine layer wind systems with a possible geoengineering application. International Journal of Hydrology, 1(7), 00039.  https://doi.org/10.15406/ijh.2017.01.00039.CrossRefGoogle Scholar
  43. Leconte, J., Forget, F., Charnay, B., Wordsworth, R., & Pottier, A. (2013). Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature, 504, 268–271.ADSCrossRefGoogle Scholar
  44. Leconte, J., Wu, H., Menou, K., & Murray, N. (2015). Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. Science, 347(6222), 632–635.  https://doi.org/10.1126/science.1258686. https://arxiv.org/pdf/1502.01952.pdf.ADSCrossRefGoogle Scholar
  45. Licht, A., Cappelle, M., Abels, H. A., Ladant, J. B., Trabucho-Alexandre, J., France-Lanord, C., Donnadieu, Y., Vandenberghe, J., Rigaudier, T., Lécuyer, C., Terry, D., Jr., Adriaens, R., Boura, A., Guo, Z., Soe, A. N., Quade, J., Dupont-Nivet, G., & Jaeger, J.-J. (2014). Asian monsoons in a late Eocene greenhouse world. Nature, 513, 501–506.  https://doi.org/10.1038/nature13704.ADSCrossRefGoogle Scholar
  46. Liu, B. & Showman, A. P. (2012). Atmospheric circulation of hot Jupiters: insensitivity to initial conditions. Preprint. http://arxiv.org/pdf/1208.0126v2.pdf.
  47. Luetscher, M., Boch, R., Sodemann, H., Spötl, C., Cheng, H., Edwards, R. L., Frisia, S., Hof, F., & Müller, W. (2015). North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems. Nature Communications, 6(6344), 1–6.  https://doi.org/10.1038/ncomms7344.CrossRefGoogle Scholar
  48. Menoua, K. (2015). Climate stability of habitable Earth-like planets. Earth and Planetary Science Letters, 429, 20–24.  https://doi.org/10.1016/j.epsl.2015.07.046.ADSCrossRefGoogle Scholar
  49. Merlis, T. M. & Schneider, T. (2010). Atmospheric dynamics of earth-like tidally locked aquaplanets. https://arxiv.org/pdf/1001.5117.pdf.
  50. Messager, C., Parker, D. J., Agusti-Panareda, O. R. A., Taylore, C. M., & Cuesta, J. (2010). Structure and dynamics of the Saharan atmospheric boundary layer during the West African monsoon onset: Observations and analyses from the research flights of 14 and 17 July 2006. Quarterly Journal of the Royal Meteorological Society, 136(s1), 107–124.  https://doi.org/10.1002/qj.469.CrossRefGoogle Scholar
  51. Nasreen Akter, N., & Tsuboki, K. (2017). Climatology of the pre-monsoon Indian dryline. International Journal of Climatology, 37(11), 3991–3998.  https://doi.org/10.1002/joc.4968.ADSCrossRefGoogle Scholar
  52. Noda, S., Ishiwatari, M., Nakajima, K., Takahashi, Y. O., Takehiro, S., Onishi, M., Hashimoto, G. L., Kuramoto, K., & Hayashi, Y.-Y. (2017). The circulation pattern and day-night heat transport in the atmosphere of a synchronously rotating aquaplanet: Dependence on planetary rotation rate. Icarus, 282, 1–18.  https://doi.org/10.1016/j.icarus.2016.09.004.ADSCrossRefGoogle Scholar
  53. Penn, J. & Vallis, G. K. (2017). The thermal phase curve offset on tidally- and non-tidally-locked exoplanets: A shallow water model. https://arxiv.org/pdf/1704.06813.pdf.
  54. Ribas, I., Bolmont, E., Selsis, F., Reiners, A., Leconte, J., Raymond, S. N., Engle, S. G., Guinan, E. F., Morin, J., Turbet, M., Forget, F., & Anglada-Escudé, G. (2016). The habitability of Proxima Centauri b I. Irradiation, rotation and volatile inventory from formation to the present. https://arxiv.org/ftp/arxiv/papers/1608/1608.06813v2
  55. Schinder, P. J., Flasar, F. M., Marouf, E. A., French, R. G., McGhee, C. A., Kliore, A. J., Rappaport, N. J., Barbinis, E., Fleischman, D., & Anabtawi, A. (2011). Saturn’s equatorial oscillation: Evidence of descending thermal structure from Cassini radio occultations. Geophysical Research Letters, 38, L08205.  https://doi.org/10.1029/2011GL047191/full.ADSCrossRefGoogle Scholar
  56. Schubert, W. H., Ciesielski, P. E., Lu, C., & Johnson, R. H. (1995). Dynamical adjustment of the trade wind inversion layer. Journal of the Atmospheric Sciences, 52, 2941–2952.  https://doi.org/10.1175/1520-0469(1995)052<2941:DAOTTW>2.0.CO;2. https://journals.ametsoc.org/doi/pdf/10.1175/1520-0469%281995%29052%3C2941%3ADAOTTW%3E2.0.CO%3B2.ADSCrossRefGoogle Scholar
  57. Showman, A. P., Menou, K., & Cho, J. Y.-K. (2007). Atmospheric circulation of hot Jupiters: A review of current understanding. http://www.lpl.arizona.edu/~showman/publications/showman-etal-santorini-paper-submitted.pdf.
  58. Showman, A. P., & Polvani, L. M. (2011). Equatorial superrotation on tidally locked exoplanets. The Astrophysical Journal, 738(1), 24.  https://doi.org/10.1088/0004-637X/738/1/71.CrossRefGoogle Scholar
  59. Telferner, A. (1990). Lee cyclogenesis resulting from the combined outbreak of cold air and potential vorticity against the Alps. Meteorology and Atmospheric Physics, 43(1–4), 31–47.ADSCrossRefGoogle Scholar
  60. Tsuda, T. (2014). Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation. Proceedings of the Japanese Academy, Series B, 90, 12–27. Preprint available at: http://www.ncbi.nlm.nih.gov/pubmed/24492645.ADSCrossRefGoogle Scholar
  61. Turbet, M., Leconte, J., Selsis, F., Bolmont, E., Forget, F., Ribas, I., Raymond, S. N., & Anglada-Escudé, G. (2016).The habitability of Proxima Centauri b II. Possible climates and observability. Article published by EDP Sciences.  https://doi.org/10.1051/0004-6361/201629577.ADSCrossRefGoogle Scholar
  62. Wheatley, P. J., Louden, T., Bourrier, V., Ehrenreich, D., & Gillon, M. (2016). Strong XUV irradiation of the Earth-sized exoplanets orbiting the ultracool dwarf TRAPPIST-1. https://arxiv.org/pdf/1605.01564.pdf.
  63. Wolf, E. T., Shields, A. L., Kopparapu, R. K., Haqq-Misra, J., & Toon, O. B. (2017). Constraints on climate and habitability for earth-like exoplanets determined from a general circulation model. https://arxiv.org/ftp/arxiv/papers/1702/1702.03315.pdf.
  64. Wolf, E. T., Shields, A. L., Kopparapu, R. K., Haqq-Misra, J., & Toon, O. B. (2017). Constraints on climate and habitability for earth-like exoplanets determined from a general circulation model. The Astrophysical Journal, 837(2), 107.  https://doi.org/10.3847/1538-4357/aa5ffc.ADSCrossRefGoogle Scholar
  65. Wordsworth, R. (2014). Atmospheric heat redistribution and collapse on tidally locked rocky planets. https://arxiv.org/pdf/1412.5575.pdf.
  66. Yang, J., Boué, G., Fabrycky, D. C., & Abbot, D. S. (2014). Strong dependence of the inner edge of the habitable zone on planetary rotation rate. Preprint. http://arxiv.org/pdf/1404.4992v1.pdf.
  67. Yang, J., Cowan, N. B., & Abbot, D. S. (2013). Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets. https://arxiv.org/pdf/1307.0515.pdf.
  68. Yang, J., Cowan, N. B., & Abbot, D. S. (2013). Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets. Preprint. http://arxiv.org/pdf/1307.0515.pdf.
  69. Yang, J., Richard Peltier, W. M., & Hu, Y. (2016). Monotonic decrease of the zonal SST gradient of the equatorial Pacific as a function of CO2 concentration in CCSM3 and CCSM4. Journal of Geophysical Research – Atmospheres, 121, 1–17.  https://doi.org/10.1002/2016JD025231.CrossRefGoogle Scholar
  70. Zendejas, J., Segura, A., & Raga, A. C. (2010). Atmospheric mass loss by stellar wind from planets around main sequence M stars. Preprint. http://arXiv.org/pdf/1006.0021v1.pdf.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David S. Stevenson
    • 1
  1. 1.SherwoodUK

Personalised recommendations