Advertisement

Red Dwarfs pp 99-140 | Cite as

Planetary Tectonism

  • David S. Stevenson
Chapter

Abstract

In this chapter we explore the processes that sculpt the long-term evolution of a planet’s surface. These are integral to developing a deeper understanding of what controls the long-term habitability of planets.

References

Tectonism

  1. Abbott, D., & Mooney, W. (1995). The structural and geochemical evolution of the continental-crust—Support for the oceanic plateau model of continental growth. Reviews of Geophysics, 33, 231–242.ADSCrossRefGoogle Scholar
  2. Ashwal, L. D., & Burke, K. (1989). African lithospheric structure, volcanism, and topography. Earth and Planetary Science Letters, 96, 8–14.ADSCrossRefGoogle Scholar
  3. Basilevsky, A. T., Pronin, A. A., Ronca, L. B., Kryuchkov, V. P., Sukhanov, A. L., & Markov, M. S. (1986). Styles of tectonic deformation on Venus: Analysis of Veneras I5 and 16 data. Journal of Geophysical Research, 91, D399–D411.ADSCrossRefGoogle Scholar
  4. Basilevsky, A. T., Shalygin, E. V., Titov, D. V., Markiewicz, W. J., Scholtend, F., Roatsch, T., Kreslavsky, M. A., Moroz, L. V., Ignatiev, N. I., Fiethe, B., Osterloh, B., & Michalik, H. (2012). Geologic interpretation of the near-infrared images of the surface taken at the Venus Monitoring Camera, Venus Express. Icarus, 217, 434–450.  https://doi.org/10.1016/j.icarus.2011.11.003.ADSCrossRefGoogle Scholar
  5. Bédard, J. H. (2018). Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geoscience Frontiers, 9, 19–49.  https://doi.org/10.1016/j.gsf.2017.01.005.CrossRefGoogle Scholar
  6. Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., Begg, G. C., O’Reilly, S. Y., & Pearson, N. J. (2010). The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos, 119(3–4), 457–466.  https://doi.org/10.1144/SP389.13.ADSCrossRefGoogle Scholar
  7. Bindschadler, D. L., & Parmentier, E. M. (1990). Mantle flow tectonics and a ductile lower crust: Implications for the formation of large-scale features on Venus. Journal of Geophysical Research, 95, 21,329–21,344.ADSCrossRefGoogle Scholar
  8. Cai, C., Weins, D. A., Shen, W., & Elmer, M. (2018). Water input into the Marianas Subduction Zone estimated from ocean-bottom seismic data. Nature, 563, 389–392.  https://doi.org/10.1038/s41586-018-0655-4.ADSCrossRefGoogle Scholar
  9. Condie, K. C. (1998). Episodic continental growth and supercontinents: A mantle avalanche connection? Earth and Planetary Science Letters, 163, 97–108.ADSCrossRefGoogle Scholar
  10. Condie, K. C. (2002). Continental growth during a 1.9-Ga superplume event. Journal of Geodynamics, 34, 249–264.ADSCrossRefGoogle Scholar
  11. Crameri, F., & Tackley, P. J. (2016). Subduction initiation from a stagnant lid and global overturn: New insights from numerical models with a free surface. Progress in Earth and Planetary Science, 3, 30.  https://doi.org/10.1186/s40645-016-0103-8.ADSCrossRefGoogle Scholar
  12. de Wit, M. J. (1998). On Archean granites, greenstones, cratons and tectonics: Does the evidence demand a verdict? Precambrian Research, 91, 181–226.ADSCrossRefGoogle Scholar
  13. De Wit, M. J., & Hynes, A. (1995). The onset of interaction between the hydrosphere and oceanic crust, and the origin of the first continental lithosphere. In M. E. Coward & A. C. Pies (Eds.), Early precambrian processes (Vol. 95, pp. 1–9). Geological Society Special Publication.Google Scholar
  14. Dumoulin, C., Cădek, O., & Choblet, G. (2013). Predicting surface dynamic topographies of stagnant lid planetary bodies. Geophysical Journal International, 195, 1494–1508.  https://doi.org/10.1093/gji/ggt363.ADSCrossRefGoogle Scholar
  15. Foley, S. F., Buhre, S., & Jacob, D. E. (2003). Evolution of the Archaean crust by delamination and shallow subduction. Nature, 421, 249–252.ADSCrossRefGoogle Scholar
  16. Frost, C. D., Frost, B. R., Kirkwood, R., & Chamberlain, K. R. (2006). The tonalite-trondhjemite-granodiorite (TTG) to granodiorite-granite (GG) transition in the late Archaean plutonic rocks of the central Wyoming province. Canadian Journal of Earth Sciences, 43, 1419–1444.  https://doi.org/10.1139/E06-082.ADSCrossRefGoogle Scholar
  17. Gerya, T. (2014). Plume-induced crustal convection: 3D thermomechanical model and implications for the origin of novae and coronae on Venus. Earth and Planetary Science Letters, 391, 183–192.  https://doi.org/10.1016/j.epsl.2014.02.005.ADSCrossRefGoogle Scholar
  18. Gerya, T. V., Stern, R. J., Baes, M., Sobolev, S. V., & Whattam, S. A. (2015). Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527, 221–225.  https://doi.org/10.1038/nature15752.ADSCrossRefGoogle Scholar
  19. Gerya, T. V., Stern, R. J., Baes, M., Sobolev, S. V., & Whattam, S. A. (2016). Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527, 221–225.ADSCrossRefGoogle Scholar
  20. Ghail, R. (2015). Rheological and petrological implications for a stagnant lid regime on Venus. Planetary and Space Science, 113–114, 2–9.  https://doi.org/10.1016/j.pss.2015.02.005.ADSCrossRefGoogle Scholar
  21. Green, M. (2001). Early Archaean crustal evolution: Evidence from ~3.5 billion year old greenstone successions in the Pilgangoora Belt, Pilbara Craton, Australia. https://ses.library.usyd.edu.au/bitstream/2123/505/2/adt-NU20030623.11023101front.pdf.
  22. Green, M. G., Sylvester, P. J., & Buick, R. (2000). Growth and recycling of early Archaean continental crust: Geochemical evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia. Tectonophysics, 322, 69–88.ADSCrossRefGoogle Scholar
  23. Hashimoto, G. L., Roos-Serote, M., Sugita, S., Gilmore, M. S., Kamp, L. W., Carlson, R. W., & Baines, K. H. (2008). Felsic highland crust on Venus suggested by Galileo Near-Infrared Mapping Spectrometer data. Journal of Geophysical Research, 113, E00B24.  https://doi.org/10.1029/2008JE003134.CrossRefGoogle Scholar
  24. Hawkesworth, C., Cawood, P., Kemp, T., Storey, C., & Dhuime, B. (2009). A matter of preservation. Science, 323, 49–50.CrossRefGoogle Scholar
  25. Herrick, R. R., & Phillips, R. J. (1990). Blob tectonics: A prediction of Western Aphrodite Terra, Venus. Geophysical Research Letters, 17, 2129–2132.ADSCrossRefGoogle Scholar
  26. Hopkins, M., Harrison, T. M., & Manning, C. E. (2008). Low heat flow inferred from 4 Gyr zircons suggests Hadean plate boundary interactions. Nature, 456, 493–496.  https://doi.org/10.1038/nature07465.ADSCrossRefGoogle Scholar
  27. Jozwiak, L. M. (2014). Constraining the lithospheric thickness of Io from a modified heat-pipe model. In 45th Lunar and Planetary Science Conference. https://www.hou.usra.edu/meetings/lpsc2014/pdf/1160.pdf.
  28. Korenaga, J. (2010). On the likelihood of plate tectonics on super-earths: Does size matter? The Astrophysical Journal Letters, 725, L43–L46.  https://doi.org/10.1088/2041-8205/725/1/L43.ADSCrossRefGoogle Scholar
  29. Lopes, R. M. C., Kamp, L. W., William, D. S., Mouginis-Mark, P., Kargel, J., Radebaugh, J., Turtle, E. P., Perry, J., Williams, D. A., Carlson, R. W., & Doute, S. (2004). Lava lakes on Io: Observations of Io’s volcanic activity from Galileo NIMS during the 2001 fly-bys. Icarus, 169, 140–174.  https://doi.org/10.1016/j.icarus.2003.11.013.ADSCrossRefGoogle Scholar
  30. Marchi, S., Bottke, W. F., Elkins-Tanton, L. T., Bierhaus, M., Wuennemann, K., Morbidelli, A., & Kring, D. A. (2014). Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature, 511, 578–582.  https://doi.org/10.1038/nature13539.ADSCrossRefGoogle Scholar
  31. Martin, P., van Hunen, J., Parman, S., & Davidson, J. (2008). Why does plate tectonics occur only on Earth? Physics Education, 43(2). https://www.researchgate.net/profile/Jon_Davidson/publication/30053838_Why_does_plate_tectonics_only_occur_on_Earth/links/54083bef0cf2c48563b941f3/Why-does-plate-tectonics-only-occur-on-Earth.pdf.
  32. McEwen, A. S., Keszthelyi, L. P., Lopes, R., Schenk, P. M., & Spencer, J. R. (2004). The lithosphere and surface of Io. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter. The planet, satellites and magnetosphere (Cambridge Planetary Science, Vol. 1) (pp. 307–328). Cambridge, UK: Cambridge University Press. ISBN: 0-521-81808-7. http://lasp.colorado.edu/~espoclass/homework/5830_2008_homework/Ch14.pdf.Google Scholar
  33. Moore, W. B., & Webb, A. A. G. (2013). Heat-pipe Earth. Nature, 501, 501–505.  https://doi.org/10.1038/nature12473.ADSCrossRefGoogle Scholar
  34. Morabito, L. A., et al. (1979). Discovery of currently active extraterrestrial volcanism. Science, 204(4396), 972.  https://doi.org/10.1126/science.204.4396.972.ADSCrossRefGoogle Scholar
  35. Næraa, T., Schersten, A., Rosing, M. T., Kemp, A. I. S., Hoffmann, J. E., Kokfelt, T. F., & Whitehouse, M. J. (2012). Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature, 485, 627–630.ADSCrossRefGoogle Scholar
  36. O’Neill, C., & Lenandric, A. (2007). Geological consequences of super-sized Earths. Geophysical Research Letters, 34, L19204.  https://doi.org/10.1029/2007GL030598.ADSCrossRefGoogle Scholar
  37. O’Neill, C., Lenardic, A., Weller, M., Moresi, L., Quenette, S., & Zhang, S. (2015). A window for plate tectonics in terrestrial planet evolution? Physics of the Earth and Planetary Interiors, 255(2016), 80–92.  https://doi.org/10.1016/j.pepi.2016.04.002.ADSCrossRefGoogle Scholar
  38. O’Rourke, J. G., & Korenaga, J. (2012). Terrestrial planet evolution in the stagnant-lid regime: Size effects and the formation of self-destabilizing crust. Icarus, 221, 1043–1060.  https://doi.org/10.1016/j.icarus.2012.10.015.ADSCrossRefGoogle Scholar
  39. Parman, S. W. (2007). Helium isotopic evidence for episodic mantle melting and crustal growth. Nature, 499, 900–903.  https://doi.org/10.1038/nature05691.ADSCrossRefGoogle Scholar
  40. Peale, S. J., et al. (1979). Melting of Io by tidal dissipation. Science, 203(4383), 892–894.  https://doi.org/10.1126/science.203.4383.892.ADSCrossRefGoogle Scholar
  41. Percival, J. A., & Williams, H. R. (1989). Late Archean Quetico accretionary complex, Superior Province, Canada. Geology, 17, 23–25.ADSCrossRefGoogle Scholar
  42. Pesonen, L. J., Mertanen, S., & Veikkolainen, T. (2012). Paleo-mesoproterozoic supercontinents—A paleomagnetic view. Geophysica, 48(1–2), 5–47.Google Scholar
  43. Polat, A., & Kerrich, R. (2001a). Geodynamic processes, continental growth, and mantle evolution recorded in late Archean greenstone belts of the southern Superior Province, Canada. Precambrian Research, 112, 5–25.ADSCrossRefGoogle Scholar
  44. Puchtel, I. S., Hofmann, A. W., Amelin, Y. V., Garbe-Schonberg, C. D., Samsonov, A. V., & Schipansky, A. A. (1999). Combined mantle plume-island arc model for the formation of the 2.9 Ga Sumozero-Kenozero greenstone belt, SE Baltic Shield: Isotope and trace element constraints. Geochimica et Cosmochimica Acta, 63, 3579–3595.ADSCrossRefGoogle Scholar
  45. Puchtel, I. S., Hofmann, A. W., Mezger, K., Jochum, K. P., Shchipansky, A., & Samsonov, A. V. (1998). Oceanic plateau model for continental crustal growth in the Archaean, a case study from the Kostomuksha greenstone belt, NW Baltic Shield. Earth and Planetary Science Letters, 155, 57–74.ADSCrossRefGoogle Scholar
  46. Pujol, M., Marty, B., Burgess, R., Turner, G., & Philippot, P. (2013). Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics. Nature, 498, 87–90.  https://doi.org/10.1038/nature12152.ADSCrossRefGoogle Scholar
  47. Rapp, R. P. (1999). First origins of archean continental crust: Assessing experimentally the roles of mafic versus ultramafic sources. New York: Dept. of Geosciences, State University of New York.Google Scholar
  48. Rey, P. F., Coltice, N., & Flament, N. (2014). Spreading continents kick-started plate tectonics. Nature, 513, 405–408.  https://doi.org/10.1038/nature13728.ADSCrossRefGoogle Scholar
  49. Roberts, J. H., & Zhong, S. (2006). Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. Journal of Geophysical Research, 111, E06013.  https://doi.org/10.1029/2005JE002668.ADSCrossRefGoogle Scholar
  50. Roberts, N. M. W., Van Kranendonk, M. J., Parman, S., & Clift, P. D. (2014). Continent formation through time. Geological Society, London, Special Publications, 389, 1–16.ADSCrossRefGoogle Scholar
  51. Rozel, A. B., Golabek, G. J., Jain, C., Tackley, P. J., & Gerya, T. (2017). Continental crust formation on early Earth controlled by intrusive magmatism. Nature, 545, 332–335.  https://doi.org/10.1038/nature22042.ADSCrossRefGoogle Scholar
  52. Seno, T. & Honda, S. (n.d.). Mantle convection and global sea level: Implications for the emergence of plate tectonics on the earth. http://www.eri.u-tokyo.ac.jp/people/seno/Papers/sealevel.pdf.
  53. Stamenković, V., Noack, D., Breuer, D., & Spohn, T. (2010). On the problem of the propensity of plate tectonics on super-earths. https://www.researchgate.net/publication/224991987_On_the_Problem_of_the_Propensity_of_Plate_Tectonics_on_Super-Earths.
  54. Stern, R. J. (2005). Evidence from ophiolites, blueschists, and ultra-high pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology, 33(7), 557–560.ADSCrossRefGoogle Scholar
  55. Stern, R. J., Gerya, T., & Tackley, P. J. (2018a). Stagnant lid tectonics: Perspectives from silicate planets, dwarf planets, large moons, and large asteroids. Geoscience Frontiers, 9(2018), 103e119.Google Scholar
  56. Stern, R. J., Gerya, T., & Tackley, P. J. (2018b). Stagnant lid tectonics: Perspectives from silicate planets, dwarf planets, large moons, and large asteroids. Geoscience Frontiers, 9, 103–119.  https://doi.org/10.1016/j.gsf.2017.06.004.CrossRefGoogle Scholar
  57. Tackley, P. J., Ammann, M., Brodholt, J. P., Dobson, D. P., & Valencia, D. (2012). Mantle dynamics in super-earths: Post-perovskite rheology and self-regulation of viscosity. https://arxiv.org/ftp/arxiv/papers/1204/1204.3539.pdf.
  58. Torsvik, T. H., van der Voob, R., Doubrovinea, P. V., Burke, K., Steinberger, B., Ashwald, L. D., Trønnes, R. G., Webb, S. J., & Bull, A. L. (2014). Deep mantle structure as a reference frame for movements in and on the Earth. PNAS, 111(24), 8735–8740.  https://doi.org/10.1073/pnas.1318135111.ADSCrossRefGoogle Scholar
  59. van Heck, H. J., & Tackley, P. J. (2011). Plate tectonics on super-Earths: Equally or more likely than on Earth. Earth and Planetary Science Letters, 310(3), 252–261.ADSCrossRefGoogle Scholar
  60. van Summeren, J., Conrad, C. P. & Gaidos, E. (2011). Mantle convection, plate tectonics, and volcanism on hot exo-earths. Retrieved from https://arxiv.org/ftp/arxiv/papers/1106.4341.pdf.
  61. Whitmeyer, S. J., & Karlstrom, K. E. (2008). Tectonic model for the Proterozoic growth of North America. Geosphere, 3(4), 220–259.  https://doi.org/10.1130/GES00055.1.CrossRefGoogle Scholar
  62. Zanazzia, J. J. & Triaud, A. H. M. J. (2017). Initiation of plate tectonics on exoplanets with significant tidal stress. https://arxiv.org/pdf/1711.09898.pdf.

True Polar Wander

  1. Andrews-Hanna, J. C., Besserer, J., Head III, J. W., Howett, C. J. A., Kiefer, W. S., Lucey, P. J., McGovern, P. J., Melosh, H. J., Neumann, G. A., Phillips, R. J., Schenk, P. M., Smith, D. E., Solomon, S. C., & Zuber, M. T. (2014). Structure and evolution of the lunar Procellarum region as revealed by GRAIL gravity data. Nature, 514, 68–71.  https://doi.org/10.1038/nature13697.ADSCrossRefGoogle Scholar
  2. Andrews-Hanna, J. C., Zuber, M. T., & Banerdt, W. B. (2008). The Borealis basin and the origin of the Martian crustal dichotomy. Nature, 453, 1212–1215.  https://doi.org/10.1038/nature07011.ADSCrossRefGoogle Scholar
  3. Creveling, J. R., Mitrovica, J. X., Chan, N.-H., Latychev, K., & Matsuyama, I. (2012). Mechanisms for oscillatory true polar wander. Nature, 491, 244–248.  https://doi.org/10.1038/nature11571.ADSCrossRefGoogle Scholar
  4. Marinova, M. M., Aharonson, O., & Asphaug, E. (2008). Mega-impact formation of the Mars hemispheric Dichotomy. Nature, 453, 1216–1219.  https://doi.org/10.1038/nature07070.ADSCrossRefGoogle Scholar
  5. McCausland, J. A., & Cocks, L. R. M. (2012). Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114, 325–368.  https://doi.org/10.1016/j.earscirev.2012.06.007.ADSCrossRefGoogle Scholar
  6. Mitchell, R. N. (2014). True Polar Wander and supercontinent cycles: Implications for lithospheric elasticity and the triaxial Earth. American Journal of Science, 314, 966–979.  https://doi.org/10.2475/05.2014.04.ADSCrossRefGoogle Scholar
  7. Mitrovica, J. X., Hay, C. C., Morrow, E., Kopp, R. E., Dumberry, M., & Stanley, S. (2015). Reconciling past changes in Earth’s rotation with 20th century global sea-level rise: Resolving Munk’s enigma. Science Advances, 1(11), e1500679.  https://doi.org/10.1126/sciadv.1500679. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730844/.ADSCrossRefGoogle Scholar
  8. Mitrovica, J. X., & Milne, G. M. G. (1998). Glaciation-induced perturbations in the Earth’s rotation: A new appraisal. Journal of Geophysical Research-Atmospheres, 103(B1), 985–100.  https://doi.org/10.1029/97JB02121.CrossRefGoogle Scholar
  9. Nakamura, R., Yamamoto, S., Matsunaga, T., Ishihara, Y., Morota, T., Hiroi, T., Takeda, H., Ogawa, Y., Yokota, Y., Hirata, N., Ohtake, M., & Saiki, K. (2012). Compositional evidence for an impact origin of the Moon’s Procellarum basin. Nature Geoscience, 5, 775–778.  https://doi.org/10.1038/ngeo1614.ADSCrossRefGoogle Scholar
  10. Phillips, B. R., Bunge, H.-P., & Schaber, K. (2009). True polar wander in mantle convection models with multiple, mobile continents. Gondwana Research, 15, 288–296.  https://doi.org/10.1016/j.gr.2008.11.007.ADSCrossRefGoogle Scholar
  11. Roberts, J. H., & Shijie Zhong, J. (2006). Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. Geophysical Research, 111, E06013.  https://doi.org/10.1029/2005JE002668.ADSCrossRefGoogle Scholar
  12. Roy, A., Wright, J. T., & Sigurdsson, S. (2014). Earthshine on a young moon: Explaining the lunar farside highlands. The Astrophysical Journal Letters, 788, L42.  https://doi.org/10.1088/2041-8205/788/2/L42.ADSCrossRefGoogle Scholar
  13. Siegler, M. A., Miller, R. S., Keane, J. T., Laneuville, M., Paige, D. A., Matsuyama, I., Lawrence, D. J., Crotts, A., & Poston, M. J. (2016). Lunar true polar wander inferred from polar hydrogen. Nature, 531, 480–484.  https://doi.org/10.1038/nature17166.ADSCrossRefGoogle Scholar
  14. Šrámek, O., & Zhong, S. (2012). Martian crustal dichotomy and Tharsis formation by partial melting coupled to early plume migration. Journal of Geophysical Research, 117, E01005.  https://doi.org/10.1029/2011JE003867.ADSCrossRefGoogle Scholar
  15. Tajeddine, R., Soderlund, K. M., Thomas, P. C., Helfenstein, P., Hedman, M. M., Burns, J. A., & Schenk, P. M. (2017). True polar wander of enceladus from topographic data. Icarus, 295, 46–60.  https://doi.org/10.1016/j.icarus.2017.04.019.ADSCrossRefGoogle Scholar
  16. Tarduno, J. A., Cottrell, R. D., & Alexei, V. (2002). Smirnov The Cretaceous superchron geodynamo: Observations near the tangent cylinder. PNAS, 99(22), 14,020–14,025.  https://doi.org/10.1073/pnas.222373499.CrossRefGoogle Scholar
  17. Torsvik, T. H., Steinberger, B., Cocks, L. R. M., & Burke, K. (2008). Longitude: Linking Earth’s ancient surface to its deep interior. Earth and Planetary Science Letters, 276, 273–282.  https://doi.org/10.1016/j.epsl.2008.09.026.ADSCrossRefGoogle Scholar
  18. Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., van Hinsbergen, D. J. J., Domeier, M., Gaina, C., Tohver, E., Meert, J. G., McCausland, P. J. A., & Cocks, L. R. M. (2012). Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114, 325–368.ADSCrossRefGoogle Scholar
  19. Wieczorek, M. A., & Le Feuvre, M. (2009). Did a large impact reorient the Moon? Icarus, 200(2009), 358–366.  https://doi.org/10.1016/j.icarus.2008.12.017.ADSCrossRefGoogle Scholar
  20. Wilhelms, D. E., & Squyres, S. W. (1984). The Martian hemispheric dichotomy may be due to a giant impact. Nature, 309, 138–140.  https://doi.org/10.1038/309138a0.ADSCrossRefGoogle Scholar
  21. Zhong, S., Zhang, N., Li, Z.-X., & Roberts, J. H. (2007). Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth and Planetary Science Letters, 261, 551–564.ADSCrossRefGoogle Scholar
  22. Zhong, S. (2009). Migration of Tharsis volcanism on Mars caused by differential rotation of the lithosphere. Nature Geoscience, 2(1), 19–23.  https://doi.org/10.1038/NGEO392.ADSCrossRefGoogle Scholar

Plumes

  1. Foulger, G. R., & Pearso, D. G. (2001). Is Iceland underlain by a plume in the lower mantle? Seismology and helium isotopes. Geophysical Journal International, 145, F1–F5. https://academic.oup.com/gji/article-abstract/145/3/F1/2015734.ADSCrossRefGoogle Scholar
  2. Montelli, R., Nolet, G., Dahlen, F. A., & Masters, G. (2006). A catalogue of deep mantle plumes: New results from finite-frequency tomography. Geochemistry, Geophysics, Geosystems, 7, Q11007.  https://doi.org/10.1029/2006GC001248.ADSCrossRefGoogle Scholar
  3. Montelli, R., Nolet, G., Dahlen, F. A., Masters, G., Engdahl, E. R., & Hung, S. H. (2004). Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338–343.ADSCrossRefGoogle Scholar
  4. Schoonman, C. M., White, N. J., & Pritchard, D. (2017). Radial viscous fingering of hot asthenosphere within the Icelandic plume beneath the North Atlantic Ocean. Earth and Planetary Science Letters, 468, 51–61.  https://doi.org/10.1016/j.epsl.2017.03.036.ADSCrossRefGoogle Scholar

Lithosphere Structure and Delamination

  1. Abdelsalam, M. G., Liegeois, J.-P., & Stern, R. J. (2002). The Saharan Metacraton. Journal of African Earth Sciences, 34, 119–136.ADSCrossRefGoogle Scholar
  2. Azzouni-Sekkal, A., Bonin, B., Benhallou, A., Yahiaoui, R., & Liégeois, J.-P. (2007). Cenozoic alkaline volcanism of the Atakor massif, Hoggar, Algeria. Geological Society of America, 418, 321–340.  https://doi.org/10.1130/2007.2418(16). GSA Special Papers.CrossRefGoogle Scholar
  3. Begg, G. C., Griffin, W. L., Natapov, L. M., O’Reilly, S. Y., Grand, S. P., O’Neill, C. J., Hronsky, J. M. A., Poudjom Djomani, Y., Swain, C. J., Deen, T., & Bowden, P. (2009). The lithospheric architecture of Africa: Seismic tomography, mantle petrology, and tectonic evolution. Geosphere, 5(1), 23–50.  https://doi.org/10.1130/GES00179.1.ADSCrossRefGoogle Scholar
  4. Boyd, O. S., Jones, C. H., & Sheehan, A. F. (2004). Foundering lithosphere imaged beneath the Southern Sierra Nevada, California, USA. Science, 305, 660–662.ADSCrossRefGoogle Scholar
  5. Costa, S., & Rey, P. (1995). Lower crustal rejuvenation and growth during post-thickening collapse—Insights from a crustal cross-section through a Variscan metamorphic core complex. Geology, 23, 905–908.ADSCrossRefGoogle Scholar
  6. Ducea, M. N. (2002). Constraints on the bulk composition and root foundering rates of continental arcs: A California arc perspective. Journal of Geophysical Research, 107(B11), ECV 15-1–ECV 15-13.  https://doi.org/10.1029/2001JB000643.CrossRefGoogle Scholar
  7. Frimmel, H. E. (2009). Chapter 5.1 Configuration of Pan-African orogenic belts in southwestern Africa. Developments in Precambrian Geology, 16, 145–151. https://www.researchgate.net/publication/251455251.CrossRefGoogle Scholar
  8. Jagoutz, O., & Behn, M. D. (2013). Foundering of lower island-arc crust as an explanation for the origin of the continental Moho. Nature, 504, 131–134.  https://doi.org/10.1038/nature12758.ADSCrossRefGoogle Scholar
  9. Kay, R. W., & Mahlburgkay, S. (1991). Creation and destruction of lower continental-crust. Geologische Rundschau, 80, 259–278.ADSCrossRefGoogle Scholar
  10. Levander, A., Schmandt, B., Miller, M. S., Liu, K., Karlstrom, K. E., Crow, R. S., Lee, C.-T. A., & Humphreys, E. D. (2011). Continuing Colorado plateau uplift by delamination style convective lithospheric downwelling. Nature, 472, 461–465.  https://doi.org/10.1038/nature10001.ADSCrossRefGoogle Scholar
  11. Liégeois, J.-P. (2006). The Hoggar swell and volcanism, Tuareg shield, Central Sahara: Intraplate reactivation of Precambrian structures as a result of Alpine convergence. www.mantleplumes.org.
  12. Murray, K. E., Ducea, M. N., & Schoenbohm, L. (2015). Foundering-driven lithospheric melting: The source of central Andean mafic lavas on the Puna Plateau (22°S–27°S). The Geological Society of America Memoir, 212, 139–166.Google Scholar
  13. Prouteau, G., Scaillet, B., Pichavant, M., & Maury, R. (2001). Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410, 197–200.ADSCrossRefGoogle Scholar
  14. Stein, M., & Hofmann, A. W. (1994). Mantle plumes and episodic crustal growth. Nature, 372, 63–68.ADSCrossRefGoogle Scholar
  15. Tanton, L. T. E., & Hager, B. H. (2000). Melt Intrusion as a trigger for lithospheric foundering and the eruption of the Siberian flood basalts. Geophysical Research Letters, 27(23), 3937–3940.ADSCrossRefGoogle Scholar
  16. Wu, F. Y., Xu, Y. G., Zhu, R. X., & Zhang, G. W. (2014). Thinning and destruction of the cratonic lithosphere: A global perspective. Science China Earth Sciences, 57(12), 2878–2890.  https://doi.org/10.1007/s11430-014-4995-0.CrossRefGoogle Scholar

Granitoids and Other Igneous Rocks

  1. Campbell, I. H., & Taylor, S. R. (1983). No water, no granites: No oceans, no continents. Geophysical Research Letters, 10, 1061–1064.ADSCrossRefGoogle Scholar
  2. Castro, A., & Gerya, T. V. (2008). Magmatic implications of mantle wedge plumes: Experimental study. Lithos, 103, 138–148.  https://doi.org/10.1016/j.lithos.2007.09.012.ADSCrossRefGoogle Scholar
  3. Frezzotti, M.-L., & Touret, J. L. R. (2014). CO2, carbonate-rich melts, and brines in the mantle. Geoscience Frontiers, 5, 697–710.  https://doi.org/10.1016/j.gsf.2014.03.014.CrossRefGoogle Scholar
  4. Kawamotoa, T., Yoshikawab, M., Kumagaia, Y., Mirabuenoc, M. H. T., Okunod, M., & Kobayashie, T. (2013). Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. PNAS, 110(24), 9663–9668.  https://doi.org/10.1073/pnas.1302040110.ADSCrossRefGoogle Scholar
  5. Pitcher, A. (1983). Classification of granitoid rocks based on tectonic setting. In K. J. Hsü (Ed.), Mountain building processes. London: Academic Press.Google Scholar
  6. Pitcher, W. S. (1993). The nature and origin of granite. London: Blackie Academic and Professional. xiv + 321 pp. ISBN 0-7514-0080-7.CrossRefGoogle Scholar
  7. Polat, A., & Kerrich, R. (2001b). Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: Implications for late Archean subduction zone petrogenetic processes. Contributions to Mineralogy and Petrology, 141, 36–52.ADSCrossRefGoogle Scholar
  8. Puchtel, I. S., Haase, K. M., Hofmann, A. W., Chauvel, C., Kulikov, V. S., GarbeSchonberg, C. D., & Nemchin, A. A. (1997). Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Shield: Evidence for an early Proterozoic mantle plume beneath rifted Archean continental lithosphere. Geochimica et Cosmochimica Acta, 61, 1205–1222.ADSCrossRefGoogle Scholar
  9. Rupkea, L. H., Morgana, J. P., Hortb, M., & Connolly, J. A. D. (2004). Serpentine and the subduction zone water cycle. Earth and Planetary Science Letters, 223, 17–34.  https://doi.org/10.1016/j.epsl.2004.04.018.ADSCrossRefGoogle Scholar
  10. Scaillet, B., & Prouteau, G. (2001a). Oceanic slab melting and mantle metasomatism. Science Progress, Science Reviews, 84, 335–354.CrossRefGoogle Scholar
  11. Scaillet, B., & Prouteau, G. (2001b). Oceanic slab melting and mantle metasomatism. Science Progress, Science Reviews 2000 Ltd., 84, 335–354.Google Scholar
  12. Straub, S. M., Gomez-Tuena, A., Stuart, F. M., Zellmer, G. F., Espinasa-Perena, R., Cai, Y., & Iizuka, Y. (2011). Formation of hybrid arc andesites beneath thick continental crust. Earth and Planetary Science Letters, 303, 337–347.  https://doi.org/10.1016/j.epsl.2011.01.013.ADSCrossRefGoogle Scholar
  13. Winter, J. D. (2001). An introduction to igneous and metamorphic petrology. Upper Saddle River: Prentice Hall. ISBN-13: 978-0132403429.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David S. Stevenson
    • 1
  1. 1.SherwoodUK

Personalised recommendations