Advertisement

The Formation of Stars and Planets at the Bottom of the Main Sequence

  • David S. Stevenson
Chapter

Abstract

You cannot consider life on other worlds before first considering their host star. This determines their orbital period, the intensity of the radiation the planet receives and the distribution of wavelengths over which meaningful intensities of radiation are emitted. This chapter is dedicated to the two most abundant classes of stars in the universe: the M- and K-class dwarfs. Although the focus of the chapter is on the former, the latter receive some well-deserved and long overdue discussion and includes a detailed (yet necessarily speculative) account of the lives of K-dwarf stars, certainly an interesting niche for future research.

References

Planetary Formation and Migration

  1. Benítez-Llambay, P., Masset, F., Koenigsberger, G., & Szulágyi, J. (2015). Planet heating prevents inward migration of planetary cores. Nature, 520, 63–65.  https://doi.org/10.1038/nature14277.ADSCrossRefGoogle Scholar
  2. Boss, A. P. (2004). Evolution of the solar nebula. VI. Mixing and transport of isotopic heterogeneity. The Astrophysical Journal, 616(2), 1265–1277.ADSCrossRefGoogle Scholar
  3. Boss, A. P. (2006). Rapid formation of super-Earths around M dwarf stars. http://arXiv.org/pdf/astro-ph/0605061v1.pdf.ADSCrossRefGoogle Scholar
  4. Boss, A. P.. (2008). Mixing in the solar Nebula: Implications for isotopic heterogeneity and large-scale transport of refractory grains. https://arxiv.org/pdf/0801.1622.pdf.ADSCrossRefGoogle Scholar
  5. Bourrier, V., Lovis, C., Beust, H., Ehrenreich, D., Henry, G. W., Astudillo-Defru, N., Allart, R., Bonfils, X., Ségransan, D., Delfosse, X., Cegla, H. M., Wyttenbach, A., Heng, K., Lavie, B., & Pepe, F. (2018). Orbital misalignment of the Neptune-mass exoplanet GJ 436b with the spin of its cool star. Nature, 553, 473–480.  https://doi.org/10.1038/nature24677.ADSCrossRefGoogle Scholar
  6. Brasser, R., Bitsch, B., & Matsumura, S. (2017). Saving super-Earths: Interplay between pebble accretion and type I migration. http://arXiv.org/pdf/1704.01962v1.pdf.
  7. Brasser, R., Matsumura, S., Ida, S., Mojzsis, S. J., & Werner, S. C.. (2016) Analysis of terrestrial planet formation by the Grand Tack model: System architecture and tack location. https://arxiv.org/pdf/1603.01009.pdf.
  8. Brenan, J. M., & McDonough, W. F. (2009). Core formation and metal–silicate fractionation of osmium and iridium from gold. Nature Geoscience, 2, 798–801.  https://doi.org/10.1038/NGEO658.ADSCrossRefGoogle Scholar
  9. Campbell, I. H., & O’Neill, H. C. S. (2012). Evidence against a chondritic Earth. Nature, 483, 553–558.  https://doi.org/10.1038/nature10901.ADSCrossRefGoogle Scholar
  10. Chatterjee, S. & Ford, E. B. (2015). Planetesimal interactions can explain the mysterious period ratios of small near-resonant planets. http://arXiv.org/pdf/arXiv:1406.0521v2.pdf.
  11. Cossou, C., Raymond, S. N., & Pierens, A.. (2017). Convergence zones for Type I migration: an inward shift for multiple planet systems.https://arxiv.org/pdf/1302.2627.pdf.
  12. Day, J. M. D. (2016). Extraordinary world. Nature, 537, 320–321.ADSCrossRefGoogle Scholar
  13. Ehrenreich, D., Bourrier, V., Wheatley, P. J., des Etangs, A. L., Hébrard, G., Udry, S., Bonfils, X., Delfosse, X., Désert, J.-M., Sing, D. K., & Vidal-Madjar, A. (2015). A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b. Nature, 522, 459–461.  https://doi.org/10.1038/nature14501.ADSCrossRefGoogle Scholar
  14. Fassett, C. I., & Minton, D. A. (2013). Impact bombardment of the terrestrial planets and the early history of the Solar System. Nature Geoscience, 6, 520–524.  https://doi.org/10.1038/NGEO1841.ADSCrossRefGoogle Scholar
  15. Feng, F. & Jones, H. R. A. (2017). Was Proxima captured by Alpha Centauri A and B? http://arXiv.org/pdf/arXiv:1709.03560.pdf.
  16. Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli. (2005). Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435, 466–469.  https://doi.org/10.1038/nature03676.ADSCrossRefGoogle Scholar
  17. Johnson, B. C., & Melosh, H. J. (2012). Impact spherules as a record of an ancient heavy bombardment of Earth. Nature, 485, 75–77.  https://doi.org/10.1038/nature10982. https://www.researchgate.net/publication/224846701_Impact_spherules_as_a_record_of_an_ancient_heavy_bombardment_of_Earth.ADSCrossRefGoogle Scholar
  18. Johnson, J. (2017). Compositions of small planets & implications for planetary dynamics. In 229th AAS Meeting, abstract # 413.06.Google Scholar
  19. Kaib, N. A. & Chambers, J. E. (2015). The fragility of the terrestrial planets during a giant planet instability. https://arxiv.org/pdf/1510.08448.pdf.
  20. Kennedy, G. M., Kenyon, S. J., & Bromley, B. C. (2006). Planet formation around low mass stars: the moving snow line and super-Earths. http://arXiv.org/pdf/astro-ph/0609140v1.pdf.
  21. Kley, W. & Nelson, R. P. (2012). Planet-disk interaction and orbital evolution. http://arXiv:1203.1184.pdf.Google Scholar
  22. Knutson, H. A., Madhusudhan, N., Cowan, N. B., Christiansen, J. L., Agol, E., Deming, D., Désert, J. M., Charbonneau, D., Henry, G. W., Homeier, D., Langton, J., Laughlin, G., & Seager, S.. (2011). A Spitzer transmission spectrum for the exoplanet GJ436b, evidence for stellar variability, and constraints on dayside flux variations. http://arXiv.org/pdf/arXiv:1104.2901.pdf.
  23. Proceedings of a workshop held 8–11 2004 in Kaua’i, Hawai’i. A. N. Krot, E. R. D. Scott, and B. Reipurth. San Francisco: Astronomical Society of the Pacific, 883-889. 2.Google Scholar
  24. Labidi, L., Cartigny, J. P., & Moreira, M. (2013). Non-chondritic Sulphur isotope composition of the terrestrial mantle. Nature, 501, 208–211.  https://doi.org/10.1038/nature12490.ADSCrossRefGoogle Scholar
  25. Landin, N. R., Ventura, P., D’Antona, F., Mendes, L. T. S., & Vaz, L. P. R. (2007). Rotational properties of the orion nebula cluster revised. In F. Kupka, I. Roxburgh and K. Chan (Eds.), Convection in astrophysics, Proceedings of IAU Symposium #239 held 21–25 August, 2006 in Prague, Czech Republic (pp. 311–313). General Assembly. http://adsabs.harvard.edu/full/2007IAUS.239,311L.
  26. Laskar, J., & Gastineau, M. (2009). Existence of collisional trajectories of Mercury, Mars and Venus with the Earth. Nature, 459, 817–819.  https://doi.org/10.1038/nature08096.ADSCrossRefGoogle Scholar
  27. Levison, H. F., Morbidelli, A., Laerhoven, C. V., Gomes, R., & Tsigani, K. (2007). Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. http://arXiv.org/pdf/0712.0553v1.pdf.
  28. Makarov, V. V., Berghea, C., & Efroimsky, M. (2013). Dynamical evolution and spin-orbit resonances of potentially habitable exoplanets. The case of GJ 581d. https://arxiv.org/pdf/1208.0814.pdf.
  29. Mann, A. (2018). Bashing holes in the tale of Earth’s troubled youth. Nature, 553, 393–339.ADSCrossRefGoogle Scholar
  30. Nagasawa, M., Ida, S., & Bessho, T. (2008). Formation of hot planets by a combination of planet scattering, tidal circularization, and Kozai mechanism. https://arxiv.org/pdf/0801.1368.pdf.
  31. Nakamoto, T., Hayashi, M. R., Kita, N. T., & Tachibana, S. (2004). Chondrule-forming shock waves in the solar Nebula by X-ray flares. Chondrites and the Protoplanetary Disk, ASP Conference Series, 341, 883.ADSGoogle Scholar
  32. O’Brien, D. P., Izidoro, A., Jacobson, S. A., Raymond, S. N., & Rubie, D. C. (2018). The delivery of water during terrestrial planet formation. https://arxiv.org/pdf/1801.05456.pdf.
  33. Penz, T., Lammer, H., Kuliko, Y. N., & Biernatabd, H. K. (2005). The influence of the solar particle and radiation environment on Titan’s atmosphere evolution. Advances in Space Research, 36(2), 241–250.  https://doi.org/10.1016/j.asr.2005.03.043.ADSCrossRefGoogle Scholar
  34. Raymond, S. N., Barnes, R., Veras, D., Armitage, P. J., Gorelick, N., & Greenberg, R. (2009). Planet-planet scattering leads to tightly packed planetary systems. http://arXiv.org/pdf/arXiv:0903.4700v1.pdf.
  35. Roig, F., Nesvorny, D., & DeSouza, S. R. (2016) Jumping Jupiter can explain Mercury’s orbit. http://arxiv.org/pdf/1603.02502.pdf.
  36. Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., & Mandell, A. M. (2011). A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206–209.  https://doi.org/10.1038/nature10201.ADSCrossRefGoogle Scholar
  37. Wertheimer, J. G. & Gregory Laughlin, G. (2006). Are Proxima and Alpha Centauri Gravitationally Bound?. https://arXiv.org/pdf/0607401v1.pdf.

Star Formation

  1. Bate, M. R., Bonnell, I. A., & Bromm, V. (2003a). The formation of a star cluster: predicting the properties of stars and brown dwarfs. Monthly Notices of the Royal Astronomical Society, 339, 577–599.ADSCrossRefGoogle Scholar
  2. Batygin, K., & Adams, F. C. (2013). Magnetic and gravitational disk–star interactions: an interdependence of pms stellar rotation rates and spin–orbit misalignments. The Astrophysical Journal, 778, 169.  https://doi.org/10.1088/0004-637X/778/2/169.ADSCrossRefGoogle Scholar
  3. Larson, R. B. (2009). Angular momentum and the formation of stars and black holes. Reports on Progress in Physics, 73(2010), 014901 (14pp.  https://doi.org/10.1088/0034-4885/73/1/014901.MathSciNetCrossRefGoogle Scholar
  4. Malmberg, D., De Angeli, F., Davies, M. B., Church, R. P., Mackey, D., & Wilkinson, M. I. (2007). Close encounters in young stellar clusters: Implications for planetary systems in the solar neighborhood. https://arxiv.org/pdf/astro-ph/0702524.pdf.
  5. Mascareño, S., Rebolo, A. R., González Hernández, J. I., & Esposito, M. (2015). Rotation periods of late-type dwarf stars from time-series high-resolution spectroscopy of chromospheric indicators. http://arXiv.org/pdf/arXiv:1506.08039v1.pdf.
  6. Olczak, C., Pfalzner, S., & Eckart, A. (2009). Stellar interactions in dense and sparse star clusters. http://arXiv.org/pdf/arXiv:0911.0293.pdf.
  7. Portegies Zwart, S. F., Hut, P., McMillan, S. L. W., & Verbunt, F. (1997) Star Cluster Ecology II: Binary evolution with single-star encounters. http://arXiv.org/pdf/astro-ph/9706090.pdf.
  8. Portegies Zwart, S. F., Makino, J., McMillan, S. L. W., & Hut, P. (1999). Star cluster ecology III: Runaway collisions in young compact star clusters. http://arXiv.org/pdf/astro-ph/9812006.pdf.
  9. Stauffer, J. R., Jones, B. F., Backman, D., Hartmann, L. W., Barrado y Navascués, D., Pinsonneault, M. H., Terndrup, D. M., & Muench, A. A. (2003). Why are the K dwarfs in the Pleiades so blue? The Astronomical Journal, 126, 833–847.ADSCrossRefGoogle Scholar

Brown Dwarfs

  1. Bate, M. R., Bonnell, I. A., & Bromm, V. (2003b). The Formation mechanism and resulting properties of brown dwarfs. Symposium—International Astronomical Union, 211, 27–30.  https://doi.org/10.1017/S0074180900210206. E. L. Martin (Ed.). https://www.cambridge.org/core/terms.ADSCrossRefGoogle Scholar
  2. Kirkpatrick, D., Barman, T. S., Burgasser, A. J., McGovern, M. R., McLean, I. S., Tinney, C. G., & Lowrance, P. J. (2005). Discovery of a Very Young Field L Dwarf, 2MASS J01415823−46335741 J. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.337.3284&rep=rep1&type=pdf.
  3. Kirkpatrick, J. D., Cushing, M. C., Gelino, C. R., Beichman, C. A., Tinney, C. G., Faherty, J. K., Schneider, A., & Mace, G. N. (2013) Discovery of the Y1 Dwarf WISE J064723.23−623235.5. http://iopscience.iop.org/article/10.1088/0004-637X/776/2/128/meta.
  4. Leggett, S. K., Cushing, M. C., Saumon, D., Marley, M. S., Roellig, T. L., Warren, S. J., Burningham, B., Jones, H. R. A., Kirkpatrick, J. D., Lodieu, N., Lucas, P. W., Mainzer, A. K., Martin, E. L., McCaughrean, M. J., Pinfield, D. J., Sloan, G. C., Smart, R. L., Tamura, M., & van Cleve, J. (2009). The physical properties of four 600 K T dwarfs. The Astrophysical Journal, 695, 1517–1526. http://arXiv.org/pdf/arXiv:0901.4093v1.pdf.ADSCrossRefGoogle Scholar
  5. Zuckerman, B. & Song, I. (2013). The minimum jeans mass, brown dwarf companion IMF, and predictions for detection of Y-type dwarfs. http://arXiv.org/pdf/0811.0429v2.pdf.

Stellar Evolution

  1. Adams, F. C., Bodenheimer, P., & Laughlin, G. (2005). M dwarfs: planet formation and long-term evolution. Astronomische Nachrichten, 326(10), 913–919.  https://doi.org/10.1002/asna.200510440.ADSCrossRefzbMATHGoogle Scholar
  2. Adams, F. C., Laughlin, G., & Graves, G. J. M. (2004). Red dwarfs and the end of the main sequence. Rev Mex AA (Serie de Conferencias), 22, 46–49. From Gravitational Collapse: from massive stars to planets, G. García-Segura, G. Tenorio-Tagle, J. Franco, & H. W. Yorke (Eds.).ADSGoogle Scholar
  3. Boyajian, T. S., von Braun, K., van Belle, G., Farrington, C., Schaefer, G., Jones, J., White, R., McAlister, H. A., ten Brummelaar, T. A., Ridgway, S., Gies, D., Sturmann, L., Sturmann, J., Turner, N. H., Goldfinger, P. J., & Vargas, N. (2013). Stellar diameters and temperatures. III main-sequence A, F, G, and K stars: additional high-precision measurements and empirical relations. The Astrophysical Journal, 771, 40.  https://doi.org/10.1088/0004-637X/771/1/40.ADSCrossRefGoogle Scholar
  4. Brown, T. M., Lanz, T., Sweigart, A. V., Cracraft, H. M. I., & Landsman, W. B. (2012a). Flash mixing on the white dwarf cooling curve: spectroscopic confirmation in NGC 2808. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.761.4364&rep=rep1&type=pdf.
  5. Brown, T. M., Sweigart, A. V., Lanz, T., Landsman, W. B., & Hubeny, I. (2012b). Flash mixing on the white dwarf cooling curve: understanding hot horizontal branch anomalies in NGC 2808. http://arXiv:astro-ph/0108040.pdf.Google Scholar
  6. Cassisi, S. (2008). Very low-mass stars: Structural and evolutionary properties. http://arXiv.org/pdf/arXiv:1111.6464.pdf.
  7. Dormanm, B., Rood, R. T., & O’Connell, R. W. (1993). Ultraviolet radiation from evolved stellar populations i. models. Astrophysical Journal, 419. https://arxiv.org/pdf/astro-ph/9311022.pdf.
  8. Eisloffel, J., Mohanty, S., & Scholz, A. (2004). Formation and evolution of very low mass stars and brown dwarfs. https://arxiv.org/pdf/astro-ph/0410046.pdf.
  9. Fagotto, F., Bressan, F. A., Bertelli, G., & Choisi, C. (1994). Evolutionary sequences of stellar models with new radiative opacities IV. Z=0.004 and z=0.008. Astronomy and Astrophysics Supplementary Series, 105, 29–38.ADSGoogle Scholar
  10. Gizis, J. E., Dettman, K. G., Burgasser, A. J., Camnasio, S., Alam, M., & Joseph, C. (2015). Kepler monitoring of an L dwarf II. clouds with multiyear lifetimes. https://arxiv.org/pdf/1509.07186v1.pdf.
  11. Gratton, R. G., D’Orazi, V., Bragaglia, A., Carretta, E., & Lucatello, S. (2010). The connection between missing AGB stars and extended horizontal branches (Research Note). http://arxiv.org/pdf/1010.5913v1.pdf.
  12. Li, C., de Grijs, R., Deng, L., & Liu, X. (2013). Blue straggler evolution caught in the act in the Large Magellanic Cloud globular cluster Hodge 11. https://arxiv.org/pdf/1304.4312v1.pdf.
  13. Luhman, K. L. (2012). The formation and early evolution of low-mass stars and brown dwarfs. https://arxiv.org/pdf/1208.5800.pdf.
  14. Rich, M., Sosin, C., Djorgovski, G., Piotto, G., King, I. R., Renzini, A., Phinney, A. E. S., Dorman, B., Liebert, J., & Meylan, G. (1997). Discovery of extended blue horizontal branches in two metal-rich globular clusters. The Astrophysical Journal, 484, L25–L28.ADSCrossRefGoogle Scholar
  15. van Dokkum, P. G. & Conroy, C. (2010). A substantial population of low mass stars in luminous elliptical galaxies. https://arxiv.org/pdf/1009.5992v1.pdf.
  16. Webbink, R. F. (1975). The evolution of helium white dwarfs in close binaries. MNRAS, 171, 555–568.ADSCrossRefGoogle Scholar
  17. Wood, B. E., Linsky, J. L., & Güdel, M. (2015). Stellar winds in time. In H. Lammer & M. Khodachenko (Eds.), Characterizing stellar and exoplanetary environments, astrophysics and space science library (Vol. 411). Switzerland: Springer International Publishing.  https://doi.org/10.1007/978-3-319-09749-72.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David S. Stevenson
    • 1
  1. 1.SherwoodUK

Personalised recommendations