• Mindia E. Salukvadze
  • Vladislav I. Zhukovskiy
Part of the Static & Dynamic Game Theory: Foundations & Applications book series (SDGTFA)


Game theory is a mathematical framework for strategy analysis and design as well as for optimal decision-making under conflict and behavioral uncertainty. On the one hand, game theory plays a key role for modern economics; on the other, it suggests possible approaches and solutions for complex strategic problems in various fields of human activity.


  1. 33.
    Gorelik, V.A., Gorelov, M.A., and Kononenko, A.F., Analiz konfliktnykh situatsii v sistemakh upravleniya (Analysis of Conflict Situations in Control Systems), Moscow: Radio i Svyaz’, 1991.Google Scholar
  2. 72.
    Zhukovskiy, V.I., Smirnova, L.V., and Gorbatov, A.S., Mathematical Foundations of the Golden Rule. II. Dynamic Case, Mat. Teor. Igr Prilozh., 2016, vol. 8, no. 1, pp. 27–62.zbMATHGoogle Scholar
  3. 82.
    Zhukovskiy, V.I. and Salukvadze, M.E., Mnogoshagovye pozitsionnye konflikty i ikh prilozheniya (Multistage Positional Conflicts and Their Applications), Moscow–Tbilisi: Intelekti, 2011.Google Scholar
  4. 83.
    Zhukovskiy, V.I. and Salukvadze, M.E., Nekotorye igrovye zadachi upravleniya i ikh prilozheniya (Some Game-Theoretic Problems of Control and Their Applications), Tbilisi: Metsniereba, 1998.Google Scholar
  5. 109.
    Kudryavtsev, K.N., Coordinated Solutions in Multiagent Information Environment, Extended Abstract of Cand. Sci. Dissertation (Phys.-Math.), South-Ural Fed. Univ., Chelyabinsk, 2011.Google Scholar
  6. 114.
    Kudryavtsev, K.N. and Stabulit, I.S., Strongly-Guaranteed Equilibrium in One Spatial Competition Problem, Tr. XVI Mezhd. Konf. “Sistemy komp’yuternoy matematiki i ikh prilozheniya” (Proc. XVI Int. Conf. “Systems of Computer Mathematics and Their Applications”), Smolensk: Gos. Univ., 2015, vol. 16, pp. 181–183.Google Scholar
  7. 116.
    Lavrov, P.L., Sotsial’naya revolyutsiya i zadachi nravstvennosti. Tom 1 (Social Revolution and Ethical Tasks. Vol. 1), Moscow: Mysl’, 1965.Google Scholar
  8. 128.
    Malkin, I.G., Teoriya ustoychivosti dvizheniya (Theory of Motion Stability), Moscow: Nauka, 1996.Google Scholar
  9. 137.
    Muschick, E. and Müller, P., Metody prinyatiya tekhnicheskikh reshenii (Methods of Technical Decision-Making), Moscow: Mir, 1990.Google Scholar
  10. 147.
    Pecherskii, S.L. and Belyaeva, A.A., Teoriya igr dlya ekonomistov. Vvodnyy kurs (Game Theory for Economists. An Introductory Course), St. Petersburg: Evrop. Univ., 2004.Google Scholar
  11. 148.
    Pisarchuk, N.N., Vvedenie v teoriyu igr (Introduction to Game Theory), Minsk: Belorus. Gos. Univ., 2011.Google Scholar
  12. 149.
    Podinovskii, V.V., General Zero-Sum Two-Person Games, Zh. Vychisl. Mat. Matem. Fiz., 1981, vol. 21, no. 5, pp. 1140–1153.MathSciNetGoogle Scholar
  13. 150.
    Podinovskii, V.V., The Principle of Guaranteed Result for Partial Preference Relations, Zh. Vychisl. Mat. Matem. Fiz., 1979, vol. 19, no. 6, pp. 1436–1450.MathSciNetGoogle Scholar
  14. 152.
    Podinovskii, V.V. and Noghin, V.D., Pareto-optimal’nye resheniya mnogokriterial’nykh zadach (Pareto Optimal Solutions of Multicriteria Problems), Moscow: Fizmatlit, 2007.Google Scholar
  15. 161.
    Russko–anglo–nemetskii tolkovyi slovar’ po biznesu (Russian–English–German Glossary on Business Science), Kuznetsova, N.N., Novikova, E.V., Plekhanov, S.V., and Chekmezov, N.A., Eds., Moscow: Gorizont, 1992.Google Scholar
  16. 167.
    Smol’yakov, E.R., Teoriya konfliktnykh ravnovesii (Theory of Conflict Equilibria), Moscow: URSS, 2004.Google Scholar
  17. 175.
    Fischer, S., Dornbusch, R., and Schmalensee, R., Economics, McGraw-Hill, 1988.Google Scholar
  18. 188.
    Shubik, M., The Present and Past of Game Theory, Mat. Teor. Igr Prilozh., 2012, vol. 4, no. 1, pp. 93–116.zbMATHGoogle Scholar
  19. 190.
    Entsiklopediya matematiki. Tom 1–5. (Encyclopeadia of Mathematics. Vols. 1–5), Moscow: Sovetsk. Entsiklop., 1977–1985.Google Scholar
  20. 193.
    A century of mathematics in America 1988–1989, vol. 1–3, ed. AMS (vol. 1. P. 382).Google Scholar
  21. 196.
    Archibald, R.C., A Semicentennial History of American Mathematical Society. 1888–1938 (2 vols.), 1938.Google Scholar
  22. 202.
    Berge, C., Théorie générale des jeux ánpersonnes games, Paris: Gauthier Villars, 1957. (Russian translation: Berge, C., Obshchaya teoriya igr neskol’kikh lits, Moscow: Fizmatgiz, 1961).zbMATHGoogle Scholar
  23. 204.
    Bertrand, J., Caleul des probabilities, Paris, 1888.Google Scholar
  24. 205.
    Bertrand, J., Book review of theorie mathematique de la richesse sociale and of recherches sur les principles mathematiques de la theorie des richesses, Journal de Savants, 1883, vol. 67, pp. 499–508.Google Scholar
  25. 209.
    Borel, E., Sur les systemes de formes lineares a determinant symetrique gauche et la theorie generale du jeu, Comptes Rendus de l’Academie des Sciences, 1927, vol. 184, pp. 52–53.zbMATHGoogle Scholar
  26. 225.
    Cournot, A., Principes de la theorie des richeses, Paris, 1863.Google Scholar
  27. 226.
    Cournot, A., Recherches sur les principes mathématiques de la théorie de richesses, Paris, 1838.zbMATHGoogle Scholar
  28. 238.
    Geoffrion, A.M., Proper Efficiency and the Theory of Vector Maximization, J. Math. Anal. and Appl., 1968, vol. 22, no. 3, pp. 618–630.MathSciNetCrossRefGoogle Scholar
  29. 252.
    Lung, R.I., Gaskó, N., and Dumitrescu, D., Characterization and Detection of 𝜖-Berge-Zhukovskii Equilibria, PLoS ONE, 2015, vol. 10, no. 7: e0131983. DOI:10.1371/journal.pone.0131983CrossRefGoogle Scholar
  30. 253.
    Van Megen, F., Born, P., and Tijs, S., A Preference Concept for Multicriteria Game, Mathematical Methods of OR, 1999, vol. 49, no. 3, pp. 401–412.CrossRefGoogle Scholar
  31. 257.
    Nash, J.F., Non-Cooperative Games, Ann. Math., 1951, vol. 54, pp. 286–295.MathSciNetCrossRefGoogle Scholar
  32. 258.
    Nash, J.F., Equilibrium Points in N-Person Games, Proc. Nat. Academ. Sci. USA, 1950, vol. 36, pp. 48–49.MathSciNetCrossRefGoogle Scholar
  33. 259.
    Nessah, R., Larbani, M., and Tazdait, T., A Note on Berge Equilibrium, Applied Mathematics Letters, 2007, vol. 20, no. 8, pp. 926–932.MathSciNetCrossRefGoogle Scholar
  34. 262.
    Von Neumann, J. and Morgenstern, O., Theory of Games and Economic Behavior, Princeton Univ. Press, 1944.zbMATHGoogle Scholar
  35. 265.
    Pottier, A. and Nessah, R., Berge-Vaisman and Nash Equilibria: Transformation of Games, International Game Theory Review, 2014, vol. 16, no. 4, p. 1450009.MathSciNetCrossRefGoogle Scholar
  36. 269.
    Shubik, M., Review of C. Berge “General theory of n-person games,” Econometrica, 1961, vol. 29, no. 4, p. 821.CrossRefGoogle Scholar
  37. 270.
    Steuer, R., Multiple Criteria Optimization: Theory, Computation and Application, New York: John Wiley and Sons, 1986.zbMATHGoogle Scholar
  38. 277.
    Tanaka, T., Two Types of Minimax Theorems for Vector-Valued Functions, J. Optimiz. Theory and Appl., 1991, vol. 68, no. 2, pp. 321–334.MathSciNetCrossRefGoogle Scholar
  39. 279.
    Vaisbord, E.M. and Zhukovskiy, V.I., Introduction to Multi Player Differential Games and Their Applications, New York: Gordon and Breach, 1988.Google Scholar
  40. 283.
    Wald, A., Statistical Decision Functions, New York: Wiley, 1950.zbMATHGoogle Scholar
  41. 289.
    Zhukovskiy, V.I., Lyapunov Functions in Differential Games, London and New York: Taylor and Francis, 2003.zbMATHGoogle Scholar
  42. 306.
    Zhukovskiy, V.I. and Larbani, M., Alliance in Three Person Games, Dostizhen. Matem. Mekhan., 2017, vol. 22, no. 1 (29), pp. 105–119.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mindia E. Salukvadze
    • 1
  • Vladislav I. Zhukovskiy
    • 2
  1. 1.Department of Engineering Sciences and Information TechnologyGeorgian National Academy of SciencesTbilisiGeorgia
  2. 2.Department of Optimal Control Faculty of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia

Personalised recommendations