Advertisement

Bioclimatology

  • Gabriela S. Entrocassi
  • Rosario G. Gavilán
  • Daniel Sánchez-Mata
Chapter
Part of the Geobotany Studies book series (GEOBOT)

Abstract

The relationship between climate and plants was noted as long ago as the third century BC by Theophrastus (Hort 1916), who highlighted the importance of climate in plant distribution through direct and experimental observation. The ideas of this thinker were developed no further until the late eighteenth and early nineteenth century—aided by the invention of the thermometer and the barometer in the seventeenth century—in the works of de Willdenow (1792), von Humboldt (1807), Wahlenberg (1811) and Grisebach (1838), when it became evident that climate was the main factor driving the distribution of plants and the communities they form, giving rise to a new science called Bioclimatology.

References

  1. Angot A (1906) Étude sur le régime pluviométrique de la méditerranée. Compt Rend Soc Sav 1906:120–134Google Scholar
  2. Angot A (1918) Études sur le climat de la France. Régime des pluies: II. Régions du Sud-Ouest et du Sud. Ann. Bureau Centr. Mét. France. I Mémoires, ParisGoogle Scholar
  3. Bagnouls F, Gaussen H (1954) Saison seche et indice xérothermique. Bull Soc Hist Nat Toulouse 88:193–239Google Scholar
  4. Bagnouls F, Gaussen H (1957) Les climats biologiques et leur classification. Ann Géogr 355:193–220CrossRefGoogle Scholar
  5. Blundo C, Malizia LR, Blake JG, Brown AD (2012) Tree species distribution in Andean forests: influence of regional and local factors. J Trop Ecol 28:83–95CrossRefGoogle Scholar
  6. Boonpragob K, Santisirisomboon J (1996) Modeling potential changes of forest area in Thailand under climatic change. Water Air Soil Pollut 92:107–117Google Scholar
  7. Box EO (1981a) Macroclimate and plant forms: an introduction to predictive modelling in phytogeography. Tasks for vegetation science, vol 1. Dr. W. Junk, The HagueCrossRefGoogle Scholar
  8. Box EO (1981b) Predicting physiognomic vegetation types with climate variables. Vegetatio 45:127–139CrossRefGoogle Scholar
  9. Box EO (1982) Life forms composition of mediterranean terrestrial vegetation in relation to climatic factors. Ecol Medit Marseille 8:173–181Google Scholar
  10. Box EO (1987) Plant life forms and Mediterranean environments. Ann Bot Roma 45(2):8–42Google Scholar
  11. Buitrago LG (2000) El clima de la Provincia de Jujuy, 2da edn. EDIUNJU, JujuyGoogle Scholar
  12. Daget P (1977a) Le bioclimat méditerraneen: caractéres généraux et modes de caractérization. Vegetatio 34(1):1–20CrossRefGoogle Scholar
  13. Daget P (1977b) Le bioclimat mediterranéen: analyse des formes climatiques par le systeme d’Emberger. Vegetatio 34(2):87–103CrossRefGoogle Scholar
  14. Daget P, David P (1982) Essai de comparaison de diverses approches climatiques de la mediterranéite. Ecol Mediterr 8:33–48Google Scholar
  15. de Martonne E (1926) L’indice d’aridité. Bull Ass Geogr Fr 9:3–5CrossRefGoogle Scholar
  16. de Martonne E (1942) Nouvelle carte mondiale de l’indice d’aridité (avec una carte hors texte et une figure dans le texte). An Géogr 288:241–250CrossRefGoogle Scholar
  17. Defaut B (1989) Un climmagrame simple et un systéme d’etages phytoclimatiques au service des naturalistes et des aménageurs en region paléartique occidentale. Bull Soc Hist Nat Toulouse 125:61–68Google Scholar
  18. Elías Castillo F, Ruiz Beltran L (1978) Agroclimatología de España. Cuadernos de INIA 7:1–29Google Scholar
  19. Emberger L (1930) Sur une formule applicable en géographie botanique. Compt Rend Hebd Seanc Acad Paris 191:389–391Google Scholar
  20. Emberger L (1932) Sur une formule climatique et ses applications en botanique. La Métereologie 92–93:1–10Google Scholar
  21. Emberger L (1938) La definition phytogeographique ddu climat désertique. Mem Soc Biogeogr 6:9–14Google Scholar
  22. Emberger L (1942) Un projet d’une classification des climats, du point de vue phytogeographique. Bull Soc Hist Nat Toulouse 77:97–124Google Scholar
  23. Emberger L (1943) Les limites de l’aire de la végétation méditerranéenne en France. Bull Soc Hist Nat Toulouse 78:159–180Google Scholar
  24. Emberger L (1954) Project d’une classification biogéographique des climats. An Biol 31(5–6):249–255Google Scholar
  25. Emberger L (1959) Sur la notion de transition en particulier dans le damaine du climat mediterranéen. Bull Serv Carte Phytogeogr 4:95–117Google Scholar
  26. Emberger L (1971) Considérations complémentaires au sujet des recherches bioclimatologiques et phytogeografiques-ecologiques. In: Travaux de botanique et d’ecologie. Masson, Paris, pp 291–301Google Scholar
  27. Entrocassi GS (2016) Estudio de los bosques subtropicales de montaña de la reserva ecológica de uso múltiple serranías de Zapla (Jujuy, Argentina): composición florística, distribución de la vegetación y caracterización bioclimática. Mem. Doc. (ined) Univ Complutense, MadridGoogle Scholar
  28. Entrocassi GS, Hormigo DF, Gavilán RG, Sánchez-Mata D (2014) Bioclimatic typology of Jujuy province (Argentina). Lazaroa 35:7–18CrossRefGoogle Scholar
  29. Fernández-González F (1997) Bioclimatología. In: Izco J (ed) Bótanica. McGraw Hill Interamericana, Madrid, pp 607–652Google Scholar
  30. Gaussen H (1921) Pluviosité estivale et pénétration de la végétation méditerranéene dans les Pyrénées françaises. Ann Géogr 30:249–256CrossRefGoogle Scholar
  31. Gaussen H (1935) Les précipitations annuelles en France. Ann Géogr 251:449–473CrossRefGoogle Scholar
  32. Gaussen H (1941) Le climat et le sol du Pays Basque. Bull Soc Bot Fr 88(1):5–16CrossRefGoogle Scholar
  33. Gaussen H (1949) Flore mesogéenne, vegetation et climat méditerranéens. Compt Rend Somm Séanc Soc Biogéogr 228:80–83Google Scholar
  34. Gaussen H, Bagnouls F (1952) L’indice xerothermique. Bull Ass Geogr Fr 222–223:10–16CrossRefGoogle Scholar
  35. Gavilán R (2005) The use of climatic parameters and indices in vegetation distribution. A case study in the Spanish Sistema Central. Int J Biometeorol 50:111–120PubMedCrossRefPubMedCentralGoogle Scholar
  36. Gavilán R, Fernández-González F (1997) Climatic discrimination of Mediterranean broad-leaved sclerophyllous and deciduous forests in central Spain. J Veg Sci 8(3):377–386CrossRefGoogle Scholar
  37. Gavilán R, Fernández-González F, Blasi C (1998) Climatic classification and ordination of the Spanish Sistema Central: relationships with potential vegetation. Plant Ecol 139:1–11CrossRefGoogle Scholar
  38. Gentilli J (1953) Une critique de la méthode de Thornthwaite pour la classification des climats. Ann Géogr 62:180–185CrossRefGoogle Scholar
  39. Giacobbe A (1938) Schema di una teoría ecológica per la classificazione della vegetatione italian. Nuovo G Bot Ital 45:37–121CrossRefGoogle Scholar
  40. Giacobbe A (1958) Ricerche ecologiche sull’ aridita nei paesi del Mediterraneo occidentale. Ist Bot Univ Firenze, FlorenceGoogle Scholar
  41. Giacobbe A (1959) Nouvelles recherches écologiques sur l’aridité sans les pays de la Méditerranáe occidentale. Naturalia Monspel 11:7–27Google Scholar
  42. Giacobbe A (1967) La mesure du bioclimat mediterraneen. Nat Monspe Ser Bot 16:45–60Google Scholar
  43. Grisebach A (1838) Ueber den Einfluss des Climats auf die Begranzung der naturlichen floren. Linnaea 12:159–200Google Scholar
  44. Guara M, Laguna E, Sanchis E (1986) Aproximación cartográfica a la distribución del índice de Emberger en la Comunidad Valenciana. Collect Bot 16(2):355–363Google Scholar
  45. Holdridge LR (1947) Determination of world plant formations from simple climatic data. Science 105:367–368CrossRefGoogle Scholar
  46. Holdridge LR (1959) Simple method for determining potential evapotranspiration from temperature data. Science 130:572CrossRefGoogle Scholar
  47. Holdridge LR (1966) The life zone system. Adansonia 6:199–203Google Scholar
  48. Holdridge LR (1967) Life zone ecology. Tropical Science Center, San José, 206 pGoogle Scholar
  49. Holdridge LR, Grenke WC, Hatheway WC, Liang WH, Tosi JA (1971) Forest environment in tropical life zones. Apilot sutdy. Oxford, New York, 747 pGoogle Scholar
  50. Hort A (1916) Enquity unto plants and minor works on odours and weather signs. By Theophrastus. W. Heinemann, LondresGoogle Scholar
  51. Köppen W (1936) Das Geographische System der Klimate. Geogr Z 6:593–611Google Scholar
  52. Livinstong BE, Livinstong GJ (1913) Temperature coefficients in plant geography and climatology. Bot Gaz 61:349–375CrossRefGoogle Scholar
  53. Lomolino MV (2001) Elevation gradients of species‐density: historical and prospective views. Glob Ecol Biogeogr 10(1):3–13CrossRefGoogle Scholar
  54. Nahal L (1981) The mediterranean climate from a biological viewpoint. In: Goodall O (ed) Mediterranean-type shrubland ecosystems of the world. Elsevier, AmsterdamGoogle Scholar
  55. Navarro G, Maldonado M (2002) Geografía Ecológica de Bolivia. Vegetación y ambientes acuáticos. Centro de Ecología. Difusión Simón I Patiño, Santa Cruz, CAGoogle Scholar
  56. Ozenda P (1954) La temperature, facteur de repartition de la vegetation en montagne. An Biol 31(5–6):295–312Google Scholar
  57. Ozenda P (1975) Sure les etages de vegetation dans les montagnes du bassin mediterraneen. Doc Cartogr Ecol 16:1–32Google Scholar
  58. Pan Y, Li X, Gong P, He C, Shi P, Pu R (2003) An integrative classification of vegetation in China based on NOAA/AVHRR and vegetation-climate indices of the Holdridge life zone. Int J Remote Sensing 24(5):1009–1027CrossRefGoogle Scholar
  59. Pelton WL, King KH, Tanner CB (1959) An evaluation on the Thornthwhite and mean temperature methods for determining potential evapotranspiration. Agron J 52:387–395CrossRefGoogle Scholar
  60. Philippis A (1937) Classificazioni ed indice del clima in rapporto alla vegetacione forestale italiana. Nuovo Giorn Bot Ital 44:1–142CrossRefGoogle Scholar
  61. Quézel P (1979) Les forets du pourtour mediterraneen: ecologie, conservation et amenagement. UNESCO Not Tech MAB 2:9–33Google Scholar
  62. Rivas-Martínez S (1981a) Les etages bioclimatiques de la vegetation de la Peninsule Iberique. An Jard Bot Madrid 37:251–268Google Scholar
  63. Rivas-Martínez S (1981b) Sobre la vegetación da Serra da Estrela. An R Acad Farm 47:435–480Google Scholar
  64. Rivas-Martínez S (1983) Nuevo índice de termicidad para la región mediterránea. In: Avances sobre la investigación en Bioclimatología. VII Re. Bioclim, Zaragoza, pp 377–380Google Scholar
  65. Rivas-Martínez S (1984) Pisos bioclimáticos de España. Lazaroa 5:33–43Google Scholar
  66. Rivas-Martínez S (1987) Memoria del mapa de series de vegetación de España. ICONA, ser Téc., M. Agric, Pesc, Alim, Madrid, 268 pGoogle Scholar
  67. Rivas-Martínez S (1990) Bioclimatic belts of West Europe. In: Duplessy JC, Pons A, Fantech R (eds) Enviroment and quality of life. Proc Euro School Clim Nat Haz C. Comm. Eur. Comm., pp 225–246Google Scholar
  68. Rivas-Martínez S (1993) Clasificación bioclimática de la Tierra. F Bot Matr 10:1–23Google Scholar
  69. Rivas-Martínez S (1997) Syntaxonomical synopsis of the potential natural plant communities of North America. I Itinera Geobot 10:5–148Google Scholar
  70. Rivas-Martínez S (2001) Global Bioclimatics (Clasificación Bioclimática de la Tierra). Phytosociological Research Center, MadridGoogle Scholar
  71. Rivas-Martínez S (2008) Global Bioclimatics (Clasificación Bioclimática de la Tierra). http://www.globalbioclimatics.org
  72. Rivas-Martínez S (2010) Sinopsis bioclimática de la Tierra y mapas bioclimáticos de Suramérica. Lecturas Singulares 10. Instituto de España. Real Academia Nacional de Farmacia, MadridGoogle Scholar
  73. Rivas-Martínez S, Bascones JC, Díaz TE, Fernández-González F, Loidi J (1991) Vegetación del Pirineo occidental y Navarra. Itinera Geobot 5:5–456Google Scholar
  74. Rivas-Martínez S, Sánchez-Mata D, Costa M (1999) North American boreal and western temperate forest vegetation. Itinera Geobot 12:3–311Google Scholar
  75. Rivas-Martínez S, Navarro G, Penas A, Costa M (2011) Biogeographic map of South America. A preliminary survey. Int J Geobot Res 1:21–40 + MapGoogle Scholar
  76. Russel RJ (1926) Climates of California. Publ Geogr Univ California 2:73–84Google Scholar
  77. Sánchez-Mata D, Gavilán RG, de la Fuente V (2017) The Sistema Central (Central Range). In: Loidi J (ed) The Vegetation of the Iberian Peninsula, vol 1. Springer, Cham, pp 549–588CrossRefGoogle Scholar
  78. Sanderson M (1948) The climate of Canada according to the new Thornthwaite classification. Sci Agric 28:501–517Google Scholar
  79. Thornthwaite CW (1931) The climates of North America according to a new classification. Geogr Rev 21:633–655CrossRefGoogle Scholar
  80. Thornthwaite CW (1943) Problems in the classification of climates. Geogr Rev 33:233–255CrossRefGoogle Scholar
  81. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rey 38:55–94CrossRefGoogle Scholar
  82. Thornthwaite CW (1954) A re-examination of the concept and measurement of potential evapotranspiration. In: Mather J (ed) The measurement of potential evapotranspiration, vol 7. Publications in Climatology, Seabrook, NJ, pp 200–209Google Scholar
  83. Tuhkanen S (1980) Climatic parameters and indices in plant geography. Acta Phytogeogr Suec 67:3–110Google Scholar
  84. Tuhkanen S (1984) A circumboreal system ofclimatic phytogeographical regions. Acta Bot Fenici 127:3–50Google Scholar
  85. Vernet JL, Ph V (1966) Sur un indice bioclimatique applicable aux climats de la France. Naturalia Monspel sér bot 17:253–262Google Scholar
  86. von Humboldt A (1807) Ideen zu einem Geographie der Pflazen nebst einem naturgemälde dei Tropenländer. Tübingen, 182 pGoogle Scholar
  87. Wahlenberg G (1811) Kamtschalische Laub und Lebermoose, gesammelt auf der russischen Entdeckungsreise von dem Herrn Hofrath Tilesius und untersucht. Mag Ges Natur Fr 5:289–297Google Scholar
  88. Walter H (1973) Vegetation of the earth. Springer, London, 237 pGoogle Scholar
  89. Walter H, Box E (1976) Global classification of natural terrestrial ecosystems. Vegetatio 32(2):75–81CrossRefGoogle Scholar
  90. Walter H, Lieth H (1964) Klimadiagram-Weltatlas, Part 2. Gustav Fischer, JenaGoogle Scholar
  91. Walter H, Harnickell E, Müeller-Dombois D (1975) Climatediagram maps of the individual continents and the ecological climatic regions of the earth. In: Supplement to the vegetation monographs. Geografisk Tidsskrift, vol 74. Springer/Verlag, Berlin/HeidelbergGoogle Scholar
  92. Wilcock AA (1950) Potential evapotranspiration: a simplification of Thornthwaite’s method. Proc R Soc Victoria 63:25–30Google Scholar
  93. Willdenow (1792) Grundiss der Kräuterkunde zu Vorlesungen. Bei Haude und Spener, BerlinGoogle Scholar
  94. Woodward FI (1987) Climate and plant distribution. Cambridge University Press, CambridgeGoogle Scholar
  95. Woodward FI, Williams BG (1987) Climate and plant distribution at global and local scales. Vegetatio 69:189–197CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gabriela S. Entrocassi
    • 1
  • Rosario G. Gavilán
    • 2
  • Daniel Sánchez-Mata
    • 2
  1. 1.Facultad de Ciencias AgrariasUniversidad Nacional de JujuySan Salvador de JujuyArgentina
  2. 2.Departamento de Farmacología, Farmacognosia y BotánicaUniversidad ComplutenseMadridSpain

Personalised recommendations