Role of Fungal Enzymes for Bioremediation of Hazardous Chemicals

  • Nitika Singh
  • Abhishek Kumar
  • Bechan Sharma
Part of the Fungal Biology book series (FUNGBIO)


Environmental hazard is growing more and more due to the indiscriminate and frequently deliberate release of harmful substances. Use of chemicals in industrial processes including nuclear experiments, agricultural practices, and various aspects of our daily lives resulted into the release of potential hazardous chemicals into the environment either on purpose or by accident. These hazardous chemicals known to pollute the environment are pesticides, heavy metals, hydrocarbons, drugs, halogenated solvents, and agricultural chemicals. After their release into environment, these chemicals are transported through the water, soil, and atmosphere sources. Fungi play a very crucial role in bioremediation of hazardous chemicals owing to their robust morphology and diverse metabolic capacity. Fungal enzymes have potential to effectively transform and detoxify hazardous substances. They have been recognized to be able to transform pollutants at a detectable rate and are potentially suitable to restore polluted environments. The fungal degradation of xenobiotics is looked upon as an effective method of removing these pollutants from the environment by a process which is currently known as bioremediation. The present chapter focuses on different fungal groups secreted a number of enzymes from a variety of habitats with their role in bioremediation of different toxic and recalcitrant compounds. This chapter presents an extensive review of the fungal activities on hazardous chemicals, fungal diversity, and the use of fungi in the degradation of chemical pollutants, enzyme degrading systems, and perspectives on the use of fungi in bioremediation and unexplored research.


Bioremediation Hazardous chemical Fungal enzymes Microorganism Recalcitrant 



NS and AK are grateful to the University Grant Commission, New Delhi, for providing financial assistance in the form of a Research Fellowship. The authors acknowledge UGC-SAP and DST-FIST for the support to the Department of Biochemistry, University of Allahabad, Allahabad, India. The authors declare no conflict of interest.


  1. Akcil A, Erust C, Ozdemiroglu S, Fonti V, Beolchini F (2015) A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J Clean Prod 86:24–36CrossRefGoogle Scholar
  2. Akileswaran L, Brock BJ, Cereghino JL, Gold MH (1999) 1, 4-Benzoquinone reductase from Phanerochaete chrysosporium: cDNA cloning and regulation of expression. Appl Environ Microbiol 65:415–421PubMedPubMedCentralGoogle Scholar
  3. Alexopoulos CJ, Mims CN, Blackwell M (1996) Introductory mycology. Willey, New YorkGoogle Scholar
  4. Aranda E (2016) Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Curr Opin Biotechnol 38:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  5. Arora DS, Rampal P (2002) Laccase production by some Phlebia species. J Basic Microbiol 42:295–301PubMedCrossRefGoogle Scholar
  6. Arora P, Srivastava A, Singh V (2010) Application of monooxygenases in dehalogenation, desulphurization, denitrification and hydroxylation of aromatic compounds. J Bioremed Biodegr 1:1–8CrossRefGoogle Scholar
  7. Ba S, Kumar VV (2017) Recent developments in the use of tyrosinase and laccase in environmental applications. Crit Rev Biotechnol 37:819–832PubMedCrossRefGoogle Scholar
  8. Baldrian P (2006) Fungal laccases–occurrence and properties. FEMS Microbiol Rev 30:215–242PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bennett GF (2007) Mycoremediation: fungal bioremediation. J Hazard Mater 144:594–595CrossRefGoogle Scholar
  10. Benny GL, Humber RA, Voigt K (2014) Zygomycetous fungi: phylum entomophthoromycota and subphyla kickxellomycotina, mortierellomycotina, mucoromycotina, and zoopagomycotina. In: Esse K, McLaughlin DJ, Spatafora JW (eds) Systematics and evolution, Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  11. Bhattacharya SS, Syed K, Shann J, Yadav JS (2013) A novel P450-initiated biphasic process for sustainable biodegradation of benzo[a]pyrene in soil under nutrient-sufficient conditions by the white-rot fungus Phanerochaete chrysosporium. J Hazard Mater 261:675–683PubMedCrossRefGoogle Scholar
  12. Bhushan B, Halasz A, Spain J, Thiboutot S, Ampleman G, Hawari J (2002) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine catalyzed by a NAD(P)H: nitrate oxidoreductase from Aspergillus niger. Environ Sci Technol 36:3104–3108PubMedCrossRefGoogle Scholar
  13. Bovio E, Gnavi G, Prigione V, Spina F, Denaro R, Yakimov M et al (2017) The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation. Sci Total Environ 576:310–318PubMedCrossRefGoogle Scholar
  14. Broda P (1992) Using microorganism for bioremediation: the barriers to implementation. Trends Biotechnol 10:303–304PubMedCrossRefGoogle Scholar
  15. Cajthaml T, Kˇresinová Z, Svobodová K, Möder M (2009) Biodegradation of endocrine disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere 75:745–750PubMedCrossRefGoogle Scholar
  16. Canet JR, Birnstingl G, Malcolm DG, Lopez-Real JM, Beck AJ (2001) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native micro¯ora and combinations of white-rot fungi in a coal-tar contaminated soil. Bioresour Technol 76:113–117PubMedCrossRefGoogle Scholar
  17. Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19:324–333PubMedCrossRefGoogle Scholar
  18. Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis KN, McGenity T, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin, Heidelberg, pp 2079–2110Google Scholar
  19. Cirino PC, Arnold FH (2002) Protein engineering of oxygenases for biocatalysis. Curr Opin Chem Biol 6:130–135PubMedCrossRefGoogle Scholar
  20. Crocker FH, Indest KJ, Fredrickson HL (2006) Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20. Appl Microbiol Biotechnol 73:274–290PubMedCrossRefGoogle Scholar
  21. Dana LD, Bauder JW (2011) A general essay on bioremediation of contaminated soil. Montana State University, BozemanGoogle Scholar
  22. D’Annibale A, Rosetto F, Leonardi V, Federici F, Petruccioli M (2006) Appl Environ Microbiol 72:28–36PubMedPubMedCentralCrossRefGoogle Scholar
  23. Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56:247–264PubMedPubMedCentralCrossRefGoogle Scholar
  24. Díaz-Cruz MS, Gago-Ferrero P, Badia-Fabregat M, Caminal G, Vicent T, Barceló D (2015) Fungal-mediated biodegradation of ingredients in personal care products. In: Díaz-Cruz MS, Barceló D (eds) Personal care products in the aquatic environment. Springer International Publishing, Cham, pp 295–317CrossRefGoogle Scholar
  25. Dua M, Singh A, Sethunathan N, Johri A (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152PubMedCrossRefGoogle Scholar
  26. Durairaj P, Malla S, Nadarajan SP et al (2015) Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of x-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microb Cell Factories 14:1–16CrossRefGoogle Scholar
  27. Esteve-Nunez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-Trinitrotoluene. Microbiol Mol Biol Rev 65:335–352PubMedPubMedCentralCrossRefGoogle Scholar
  28. Evans TN, Seviour RJ (2012) Estimating biodiversity of fungi in activated sludge communities using culture-independent methods. Microb Ecol 63:773–786CrossRefGoogle Scholar
  29. Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Biorem J 3:1–25CrossRefGoogle Scholar
  30. Giardina P, Cannio R, Martirani L, Marzullo L, Palmieri G, Sannia G (1995) Cloning and sequencing of a laccase gene from the lignin-degrading basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 61:2408–2413PubMedPubMedCentralGoogle Scholar
  31. Gillespie IMM, Philip JC (2013) Bioremediation, an environmental remediation technology for the bioeconomy. Trends Biotechnol 31:329–332PubMedCrossRefGoogle Scholar
  32. Gnanasalomi VDV, Jebapriya GR, Gnanadoss JJ (2013) Bioremediation of hazardous pollutants using fungi. Int J Comput Algorithm 2:273–278Google Scholar
  33. Guengerich FP, Munro AW (2013) Unusual cytochrome P450 enzymes and reactions. J Biol Chem 288:17065–17073PubMedPubMedCentralCrossRefGoogle Scholar
  34. Habash M, Trevors J, Lee H (2004) Bacterial reductive dehalogenases. In: Singh A, Ward OP (eds) Biodegradation and bioremediation soil biology. Springer, Berlin, pp 197–233CrossRefGoogle Scholar
  35. Halaouli S, Asther M, Sigoillot JC, Hamdi M, Lomascolo A (2006) Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol 100:219–232PubMedCrossRefGoogle Scholar
  36. Hammel KE (1995) Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environ Health Perspect 103:41–43PubMedPubMedCentralGoogle Scholar
  37. Hammel KE (1997) Fungal degradation of lignin. In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, pp 33–45Google Scholar
  38. Hammel K, Green B, Gai WZ (1991) Ring fission of anthracene by eukariote. Proc Natl Acad Sci 88:10605–10608PubMedCrossRefGoogle Scholar
  39. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol l9:177–192CrossRefGoogle Scholar
  40. Hibbett DS, Taylor JW (2013) Fungal systematics: is a new age of enlightenment at hand? Nat Rev Microbiol 11:129–133PubMedCrossRefGoogle Scholar
  41. Hildén K, Hakala TK, Lundell T (2009) Thermotolerant and thermostable laccases. Biotechnol Lett 31:1117–1128PubMedCrossRefGoogle Scholar
  42. Hiner AN, Hernández-Ruiz J, Rodríguez-López JN, García-Cánovas F, Brisset NC, Smith AT, Arnao MB, Acosta M (2002) Reactions of the class II peroxidases, lignin peroxidase and Arthromyces ramosus peroxidase, with hydrogen peroxide: catalase-like activity, compound III formation, and enzyme inactivation. J Biol Chem 277:26879–26885PubMedCrossRefGoogle Scholar
  43. Hofrichter M (2002) Review: Lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30:454–466CrossRefGoogle Scholar
  44. Hofrichter M, Bublitz F, Fritsche W (1994) Unspecific degradation of halogenated phenols by the soil fungus Penicillium frequentans Bi 7/2. J Basic Microbiol 34:163–172PubMedCrossRefGoogle Scholar
  45. Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87:871–897PubMedCrossRefGoogle Scholar
  46. Hofrichter M, Ullrich R, Kellner H, Upadhyay RC Scheibner K (2014) Fungal unspecific peroxygenases: a new generation of oxygen-transferring biocatalysts, proceedings of the 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8)Google Scholar
  47. Hofrichter M, Kellner H, Pecyna MJ, Ullrich R (2015) Fungal unspecific peroxygenases: Heme-Thiolate proteins that combine peroxidase and cytochrome P450 properties. In: Hrycay E, Bandiera S (eds) Monooxygenase, peroxidase and peroxygenase properties and mechanisms of cytochrome P450. Advances in experimental medicine and biology, vol 851. Springer, ChamGoogle Scholar
  48. Hundt K, Martin D, Hammer E, Jonas U, Kindermann MK, Schauer F (2000) Transformation of triclosan by Trametes versicolor and Pycnoporus cinnabarinus. Appl Environ Microbiol 66:4157–4160PubMedPubMedCentralCrossRefGoogle Scholar
  49. Ichinose H (2013) Cytochrome P450 of wood-rotting basidiomycetes and biotechnological applications. Biotechnol Appl Biochem 60:71–81PubMedCrossRefGoogle Scholar
  50. Jebapriya GR, Gnanadoss JJ (2013) Bioremediation of textile dye using white-rot fungi: a review. Int J Curr Res Rev 5:1–13Google Scholar
  51. Juwarkar A, Singh S, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Bio 9:215–288Google Scholar
  52. Kang SI, Kang SY, Hur HG (2008) Identification of fungal metabolites of anticonvulsant drug carbamazepine. Appl Microbiol Biotechnol 79:663–669PubMedCrossRefGoogle Scholar
  53. Karich A, Ullrich R, Scheibner K, Hofrichter M (2017) Fungal unspecific peroxygenases oxidize the majority of organic EPA priority pollutants. Front Microbiol 8:1–5CrossRefGoogle Scholar
  54. Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzym Res 2011:1–11CrossRefGoogle Scholar
  55. Kasai N, Ikushiro SI, Shinkyo R, Yasuda K, Hirosue S, Arisawa A, Ichinose H, Wariishi H, Sakaki T (2010) Metabolism of mono- and dichloro-dibenzo-p-dioxins by Phanerochaete chrysosporium cytochromes P450. Appl Microbiol Biotechnol 6:773–780CrossRefGoogle Scholar
  56. Khadrani A, Seigle-Murandi F, Steiman R, Vroumsia T (1999) Degradation of three phenylurea herbicides (chlortoluron, isoproturon and diuron) by micromycetes isolated from soil. Chemosphere 38:3041–3050PubMedCrossRefGoogle Scholar
  57. Koua D, Cerutti L, Falquet L, Sigrist CJ, Theiler G, Hulo N, Dunand C (2009) PeroxiBase: a database with new tools for peroxidase family classification. Nucleic Acids Res 37:D261–D266PubMedCrossRefGoogle Scholar
  58. Kulshrestha G, Kumari A (2011) Fungal degradation of chlor- pyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory-enriched red agricultural soil. Biol Fertil Soils 47:219–225CrossRefGoogle Scholar
  59. Kumar A, Sharma B (2018) Consequences of heavy metals pollution in environment and bioremediation practices. In: Bharagava RN (ed) Recent advances in environmental management. CRC Press, Taylor & Francis Group, Boca Raton, pp 247–273Google Scholar
  60. Kumar A, Singh N, Pandey R, Gupta VK, Sharma B (2018) Biochemical and molecular targets of heavy metals and their actions. In: Rai M, Ingle A, Medici S (eds) Biomedical applications of metals. Springer, ChamGoogle Scholar
  61. Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R (2016a) Rev Environ Contam Toxicol 236:117–192PubMedGoogle Scholar
  62. Kuppusamy S, Thavamani P, Megharaj M, Naidu R (2016b) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by novel bacterial consortia tolerant to diverse physical settings - assessments in liquid-and slurry-phase systems. Int Biodeterior Biodegradation 108:149–157CrossRefGoogle Scholar
  63. Leung M (2004) Bioremediation: techniques for cleaning up a mess. J Biotechnol 2:18–22Google Scholar
  64. Liao CS, Yuan SY, Hung BH, Chang BV (2012) Fundamentals of molecular mycology. J Environ Monit 14:1983–1988PubMedCrossRefGoogle Scholar
  65. Lien PJ, Ho HJ, Lee TH, Lai WL, Kao CM (2015) Effects of aquifer heterogeneity and geochemical variation on petroleum hydrocarbon biodegradation at a gasoline spill site. Adv Mater Res 1079:584–588Google Scholar
  66. Liers C, Arnstadt T, Ullrich R, Hofrichter M (2011) Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol Ecol 78:91–102PubMedCrossRefGoogle Scholar
  67. Liu B, Liu J, Ju M, Li X, Wang P (2017) Bacteria-white-rot fungi joint remediation of petroleum-contaminated soil based on sustained release of laccase. R Soc Chem 7:39075–39081Google Scholar
  68. Lynch MDJ, Thorn RG (2006) Diversity of Basidiomycetes in Michigan agricultural soils. Appl Environ Microbiol 72:7050–7056PubMedPubMedCentralCrossRefGoogle Scholar
  69. Majeau JA, Brar SK, Tyagi RD (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresour Technol 101:2331–2350PubMedCrossRefPubMedCentralGoogle Scholar
  70. Marco E, Font X, Sánchez A, Gea T, Gabarrell X, Caminal G (2013) Co-composting as a management strategy to reuse the white–rot fungus Trametes versicolor after its use in a biotechnological process. Int J Environ Waste Manag 11:100–108CrossRefGoogle Scholar
  71. Marco-Urrea E, García-Romera I, Aranda E (2015) Potential of nonligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnol 32:620–628CrossRefGoogle Scholar
  72. Mate DM, Alcalde M (2017) Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol 10:1457–1467PubMedCrossRefGoogle Scholar
  73. Maza-Márquez P, Vilchez-Vargas R, Kerckhof FM, Aranda E, González- López J, Rodelas B (2016) Community structure, population dynamics and diversity of fungi in a full-scale membrane bioreactor (MBR) for urban wastewater treatment. Water Res 105:507–519CrossRefGoogle Scholar
  74. McErlean C, Marchant R, Banat IM (2006) An evaluation of soil colonisation potential of selected fungi and their production of ligninolytic enzymes for use in soil bioremediation applications. Antonie Van Leeuwenhoek 90:147–158PubMedCrossRefGoogle Scholar
  75. Mishra A, Malik A (2014) Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream. Bioresour Technol 171:217–226PubMedCrossRefGoogle Scholar
  76. Mohan SV, Kisa T, Ohkuma T, Kanaly RA, Shimizu Y (2006) Mechanism of bacteria-fungi joint remediation system. Rev Environ Sci Biotechnol 5:347–374CrossRefGoogle Scholar
  77. Moody JD, Freeman JP, Ceniglia CE (2004) Degradation of benzo[a] pyrene by Mycobacterium vanbaolenii PYR-1. Appl Environ Microbiol 70:340–345PubMedPubMedCentralCrossRefGoogle Scholar
  78. Morel M, Meux E, Mathieu Y, Thuillier A, Chibani K, Harvengi L, Jacquot J-P, Gelhaye E (2013) Xenomic networks variability and adaptation traits in wood decaying fungi. Microb Biotechnol 6:248–263PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nõlvak H, Truu J, Limane B, Truu M, Cepurnieks G, Bartkevičs V, Juhanson J, Muter O (2013) Microbial community changes in TNT spiked soil bioremediation trial using biostimulation, phytoremediation and bioaugmentation. J Environ Eng Landsc Manag 21:153–162Google Scholar
  80. Oh YS, Choi SC, Kim YK (1998) Degradation of gaseous BTEX biofiltration with Phanerochaete chrysosporium. J Microbiol 36:34–38Google Scholar
  81. Parshikov IA, Freeman JP, Lay JO, Beger RD, Williams AJ, Sutherland JB (2000) Microbiological transformation of enrofloxacin by the fungus Mucor ramannianus. Appl Environ Microbiol 66:2664–2667PubMedPubMedCentralCrossRefGoogle Scholar
  82. Parshikov IA, Freeman JP, Lay JO Jr, Moody JD, Williams AJ, Beger RD, Sutherland JB (2001) Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. J Ind Microbiol Biotechnol 26:140–144PubMedCrossRefGoogle Scholar
  83. Peter S, Kinne M, Ullrich R, Kayser G, Hofrichter M (2013) Epoxidation of linear, branched and cyclic alkenes catalyzed by unspecific peroxygenase enzyme. Microb Technol 10:370–376CrossRefGoogle Scholar
  84. Pinedo-Rilla C, Aleu J, Collado IG (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214CrossRefGoogle Scholar
  85. Prenafeta-Boldú FX, Summerbell R, Sybren de Hoog G (2006) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev 30:109–130PubMedCrossRefGoogle Scholar
  86. Prince RC. (2010) Eukaryotic hydrocarbon degraders. In: Timmis KN, McGenity TJ, van der Meer JR, de Lorenzo V (eds), Handbook of Hydrocarbon and Lipid Microbiology. Springer-Verlag, Berlin, Heidelberg, pp 2065–2078.Google Scholar
  87. Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. Scholar
  88. Rao MA, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr 10:333–353CrossRefGoogle Scholar
  89. Rastegari AA, Yadav AN, Gupta A (2019) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, ChamCrossRefGoogle Scholar
  90. Rieble S, Joshi DK, Gold MH (1994) Aromatic nitroreductase from the basidiomycete Phanerochaete Chrysosporium. Biochem Biophys Res Commun 205:298–304PubMedCrossRefGoogle Scholar
  91. Ritz K, Young IM (2004) Interactions between soil structure and fungi. Mycologist 18:52–59CrossRefGoogle Scholar
  92. Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60:441–452PubMedCrossRefGoogle Scholar
  93. Sagarkar S, Mukherjee S, Nousiainen A, Björklöf K, Purohit HJ, Jørgensen KS, Kapley A (2013) Monitoring bioremediation of atrazine in soil microcosms using molecular tools. Environ Pollut 172:108–115PubMedCrossRefGoogle Scholar
  94. Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W (1997) Screening for fungi intensively mineralizing 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 47:452–457PubMedCrossRefGoogle Scholar
  95. Schmidt-Dannert C (2016) Biocatalytic portfolio of Basidiomycota. Curr Opin Chem Biol 31:40–49PubMedPubMedCentralCrossRefGoogle Scholar
  96. Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67CrossRefGoogle Scholar
  97. Silva M, Esposito E (2004) O papel dos fungos na recupera¸c˜ao ambiental. In Fungos: Uma Introdu¸c˜ao a Biologia, Bioquimica e Biotecnologia. Esposito E and De Azevedo JL (Eds.). EDUCS Ed 2:337–375Google Scholar
  98. Silva M, Cerniglia CE, Pothuluri JV, Canhos VP, Esposito E (2003) Screening filamentous fungi isolated from estuarine sediment for the ability to oxidize polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 19:399–405CrossRefGoogle Scholar
  99. Silva MC, Torres JA, Castro AA, da Cunha EF, Alves de Oliveira LC, Corrêa AD, Ramalho TC (2016) Combined experimental and theoretical study on the removal of pollutant compounds by peroxidases: affinity and reactivity toward a bioremediation catalyst. J Biomol Struct Dyn 34:1839–1848PubMedCrossRefGoogle Scholar
  100. Singh N, Gupta VK, Kumar A, Sharma B (2017) Synergistic effects of heavy metals and pesticides in living systems. Front Chem 5:1–9CrossRefGoogle Scholar
  101. Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555PubMedCrossRefGoogle Scholar
  102. Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spatafora JW, Taylor JW (2009) The fungi. Curr Biol 19:R840–R845PubMedPubMedCentralCrossRefGoogle Scholar
  103. Syed K, Porollo A, Lam YW, Grimmet PE, Yadav JS (2013) CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes. Appl Environ Microbiol 79:2692–2702PubMedPubMedCentralCrossRefGoogle Scholar
  104. Theron CW, Labuschagné M, Gudiminchi R, Albertyn J, Smit MS (2014) A broad-range yeast expression system reveals Arxula adeninivorans expressing a fungal self-sufficient cytochrome P450 monooxygenase as an excellent whole-cell biocatalyst. FEMS Yeast Res 14:556–566PubMedCrossRefGoogle Scholar
  105. Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64:271–293CrossRefGoogle Scholar
  106. Urlacher VB, Girhard M (2012) Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 30:26–36PubMedCrossRefGoogle Scholar
  107. Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172CrossRefGoogle Scholar
  108. Wang X, Cai Z, Zhou Q, Zhang Z, Chen C (2012) Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells. Biotechnol Bioeng 109(2):426PubMedCrossRefGoogle Scholar
  109. Weber SD, Hofmann A, Pilhofer M, Wanner G, Agerer R, Ludwig W, Schleifer KH, Fried J (2009) The diversity of fungi in aerobic sewage granules assessed by 18S rRNA gene and ITS sequence analyses. FEMS Microbiol Ecol 68:246–254PubMedCrossRefGoogle Scholar
  110. Wu Y, Teng Y, Li Z, Liao X, Luo Y (2008) Advances in applied bioremediation. Soil Biol Biochem 40:789–796CrossRefGoogle Scholar
  111. Yadav JS, Reddy CA (1993) Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by lignin–degrading basidiomycetes Phanerochaete chrysosporium. Appl Environ Microbiol 59:756–762PubMedPubMedCentralGoogle Scholar
  112. Yadav JS, Doddapaneni H, Subramanian V (2006) P450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters. Biochem Soc Trans 34:1165–1169PubMedCrossRefGoogle Scholar
  113. Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307PubMedCrossRefPubMedCentralGoogle Scholar
  114. Yadav A, Verma P, Kumar R, Kumar V, Kumar K (2017a) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22Google Scholar
  115. Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017b) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13CrossRefGoogle Scholar
  116. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. Scholar
  117. Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi volume 1: diversity and enzymes perspectives. Springer International Publishing, ChamCrossRefGoogle Scholar
  118. Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: perspective for value-added products and environments. Springer International Publishing, ChamCrossRefGoogle Scholar
  119. Zaidi KU, Ali AS, Ali SA, Naaz I (2014) Microbial Tyrosinases: promising enzymes for pharmaceutical, food bioprocessing, and environmental industry. Biochem Res Int 2014:1–16CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nitika Singh
    • 1
  • Abhishek Kumar
    • 1
  • Bechan Sharma
    • 1
  1. 1.Department of Biochemistry, Faculty of ScienceUniversity of AllahabadAllahabadIndia

Personalised recommendations