Advertisement

Impact of Arbuscular Mycorrhizal Fungi (AMF) in Global Sustainable Environments

  • Sanjeev Kumar
  • Joginder Singh
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

With the application of green revolution techniques and at the same time consistent degradation of natural ecosystem, there has been a question about the sustainability of current agricultural practices. Yields of many crop species now are stagnant in various agro-climatic zones since 15–20 years. This is due to the continuous loading of industrial effluents in several agro ecosystems that has led to a rapid yield decline, which in turn results in increased food insecurity and soil degradation. This decline in yield could partly be associated with the presence of highly efficient plant symbionts, arbuscular mycorrhizal (AM) fungi in cultivated soils that have been lost after several years of contamination of soils with industrial pollutants. Many AM fungal ecotypes colonize with the root of specific hyperaccumulator plant species and enhance heavy metal tolerance mechanism and accumulations. Despite the multiple roles of arbuscular mycorrhizal fungi (AMF) in the entire terrestrial ecosystem, the impact on their biodiversity in response to the industrial effluents and modern high input agriculture is less understood. Therefore, this chapter aims to critically review the basis of sustainable agricultural practices and explore the role of mycorrhizal species in the altered ecosystem.

Keywords

Arbuscular mycorrhizal fungi Industrial wasteland Mycorrhizosphere Symbiosis Sustainable environments 

Notes

Acknowledgments

The authors wish to thank financial contributions from Department of Biotechnology, Government of India and The Energy and Resource Institute (TERI), New Delhi, India. We thank Dr. R K Pachauri, Director General, TERI, for providing the necessary infrastructure for carrying out the research work.

References

  1. Abbott LK, Robson AD (1991) Factors influencing the occurrence of vesicular-arbuscular mycorrhizas. Agric Ecosyst Environ 35:121–150CrossRefGoogle Scholar
  2. Akhtar O, Mishra R, Kehri HK (2017) Arbuscular Mycorrhizal Association Contributes to Cr accumulation and tolerance in plants growing on Cr contaminated soils. Proc Natl Acad Sci India Sect B Biol Sci 89(1):63–70Google Scholar
  3. Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol Plant-Microbe Interact 15:334–340PubMedCrossRefPubMedCentralGoogle Scholar
  4. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedCrossRefPubMedCentralGoogle Scholar
  5. Altieri MA (1999) The ecological role of biodiversity in agroecosystems. In: Paoletti MG (ed) Invertebrate biodiversity as bioindicators of sustainable landscapes. Elsevier, Amsterdam, pp 19–31CrossRefGoogle Scholar
  6. Altieri MA (2004) Linking ecologists and traditional farmers in the search for sustainable agriculture. Front Ecol Environ 2:35–42CrossRefGoogle Scholar
  7. Azcón-Aguilar C, Bago B, Barea JM (1999) Saprophytic growth of arbuscular mycorrhizal fungi. Mycorrhiza:391–408. Springer, Berlin/HeidelbergGoogle Scholar
  8. Balaji B, Poulin MJ, Vierheilig H, Piché Y (1995) Responses of an arbuscular mycorrhizal fungus, Gigaspora margarita, to exudates and volatiles from the Ri T-DNA-transformed roots of non mycorrhizal and mycorrhizal mutants of Pisum sativum L Sparkle. Exp Mycol 19:275–283CrossRefGoogle Scholar
  9. Baltruschat H (1987) Field inoculation of maize with vesicular-arbuscular mycorrhizal fungi by using expanded clay as carrier material for mycorrhiza. JPDP 94:419–430Google Scholar
  10. Bécard G, Douds DD, Pfeffer PE (1992) Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl Environ Microbiol 58(3):821PubMedPubMedCentralGoogle Scholar
  11. Bécard G, Kosuta S, Tamasloukht M, Séjalon-Delmas N, Roux C (2004) Partner communication in the arbuscular mycorrhizal interaction. Can J Bot 82:1186–1197CrossRefGoogle Scholar
  12. Beena KR, Raviraja NS, Arun AB, Sridhar KR (2000) Diversity of arbuscular mycorrhizal fungi on the coastal sand dunes of the west coast of India. Curr Sci 79:1459–1466Google Scholar
  13. Bentivenga S, Hetrick B (1992) The effect of prairie management practices on mycorrhizal symbiosis. Mycologia 84(4):522–527CrossRefGoogle Scholar
  14. Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Séjalon-Delmas N (2006) Strigolactones stimulates arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4(7):226CrossRefGoogle Scholar
  15. Bethlenfalvay GJ, Schüepp H (1994) Arbuscular mycorrhizas and agrosystem stability. In: Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 117–131CrossRefGoogle Scholar
  16. Bever JD, Morton JB, Antonovics J, Schultz PA (1996) Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in mown grassland. J Ecol 84(1):71–82CrossRefGoogle Scholar
  17. Bills RJ, Stutz JC (2009) AMF associated with indigenous and non-indigenous plants at urban and desert sites in Arizona. In: Mycorrhizas-functional processes and ecological impact. Springer, Berlin/Heidelberg, pp 207–220CrossRefGoogle Scholar
  18. Blaszkowski J (1993) Comparative studies on the occurrence of arbuscular fungi and mycorrhizae (Glomales) in cultivated and uncultivated soils of Poland. Acta Mycol 28:93–140CrossRefGoogle Scholar
  19. Błaszkowski J (1994) Arbuscular fungi and mycorrhizae (Glomales) of the Hel Peninsula, Poland. Mycorrhiza 5(1):71–88CrossRefGoogle Scholar
  20. Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66(1):102Google Scholar
  21. Bragaloni M, Rea E, Pirazzi R (1998) Problems and perspectives in the inoculum production of vesicular– arbuscular fungi isolated from sand dunes. Micol Ital 27:61–67Google Scholar
  22. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77CrossRefGoogle Scholar
  23. Brundrett M, Juniper S (1995) Non-destructive assessment of spore germination of VAM fungi and production of pot cultures from single spores. Soil Biol Biochem 27:85–91CrossRefGoogle Scholar
  24. Brundrett M, Melville L, Peterson L, (Eds.) (1994) Practical methods in mycorrhiza research : based on a workshop organized in conjunction with the ninth North American Conference on mycorrhizae, University of Guelph, Guelph, Ontario, Canada. Mycologue PublicationsGoogle Scholar
  25. Buee M, Rossignol M, Jauneau A, Ranjeva R, Bécard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant-Microbe Interact 13:693–698PubMedCrossRefPubMedCentralGoogle Scholar
  26. Caravaca F, Hernandez T, Garcıa C, Roldan A (2002) Improvement of rhizosphere aggregate stability of afforested semiarid plant species subjected to mycorrhizal inoculation and compost addition. Geoderma 108(1–2):133–144CrossRefGoogle Scholar
  27. Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116(1–2):72–84CrossRefGoogle Scholar
  28. Clapp JP, Fitter AH, Merryweather JW (1996) Arbuscular mycorrhizas methods for the examination of organismal diversity in soils and sediments. CAB International, New York, pp 145–161Google Scholar
  29. Dalgaard T, Hutchings NJ, Porter JR (2003) Agroecology, scaling and interdisciplinarity. Agric Ecosyst Environ 100:39–51CrossRefGoogle Scholar
  30. Demchenko K, Winzer T, Stougaard J, Parniske M, Pawlowski K (2004) Distinct roles of Lotus japonicus SYMRK and SYM15 in root colonization and arbuscule formation. New Phytol 163:381–392CrossRefGoogle Scholar
  31. Douds DD, Millner P (1999) Biodiversity of arbuscular mycorrhizal fungi in agro ecosystems. Agic Ecosyst Environ 74:77–93CrossRefGoogle Scholar
  32. Douds DD, Galvez L, Franke-Snyder M, Reider C, Drinkwater LE (1997) Effect of compost addition and crop rotation point upon VAM fungi. Agric Ecosyst Environ 65:257–266CrossRefGoogle Scholar
  33. Eason WJ, Scullion et al (1999) Soil parameters and plant responses associated with arbuscular mycorrhizas from contrasting grassland management regimes. Agric Ecosyst Environ 73:245–255CrossRefGoogle Scholar
  34. Feldman F, Izsak E (1994) Inoculum production of VA mycorrhizal fungi. In: Techniques for mycorrhizal research. Academic Press, San Diego, pp 799–817Google Scholar
  35. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M et al (2011) Solutions for a cultivated planet. Nature 478:337–342PubMedCrossRefPubMedCentralGoogle Scholar
  36. Fracchia S, Menendez A et al (2001) A method to obtain monosporic cultures of arbuscular mycorrhizal fungi. Soil Biol Biochem 33:1283–1285CrossRefGoogle Scholar
  37. Gallaud I (1905) Études sur les mycorrhizes endophytes. Revue General deGoogle Scholar
  38. Galvez L, Douds DD, Drinkwater LE, Wagoner P (2001) Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize. Plant Soil 228:299–308CrossRefGoogle Scholar
  39. Gaur A, Adholeya A (2002) Arbuscular mycorrhizal inoculation of five tropical fodder crops and inoculum production in marginal soil amended with organic matter. Biol Fertil Soils 35:214–218CrossRefGoogle Scholar
  40. Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gianinazzi S, Gianinazzi-Pearson V, Trouvelot A (1989) Potentialities and procedures for the use of endomycorrhizas with special emphasis on high value crops. Cambridge University Press, Cambridge, pp 41–45Google Scholar
  42. Giovanetti M, Avio L (1985) VAM infection and reproduction as influenced by different organic and inorganic substances. In: Molina R (ed) Proc. 6th N. Amer. Conf. Mycorrhizae. For. Res. Lab, Corvallis, p 400Google Scholar
  43. Giovannetti M (2000) Spore germination and pre-symbiotic mycelial growth. In: Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 47–68CrossRefGoogle Scholar
  44. Gosling P, Ozaki A, Jones J, Turner M, Rayns F, Bending GD (2010) Organic management of tilled agricultural soils results in a rapid increase in colonisation potential and spore populations of arbuscular mycorrhizal fungi. Agric Ecosyst Environ 139:273–279CrossRefGoogle Scholar
  45. Graham JH (1982) Effect of citrus root exudates on germination of chlamydospores of the vesicular-arbuscular mycorrhizal fungus, Glomus epigaeum. Mycologia 74(5):831–835CrossRefGoogle Scholar
  46. Gryndler M (2000) Interaction of arbuscular mycorrhizal fungi with other soil organisms. In: Kapulink Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic, Dordrecht, pp 239–262CrossRefGoogle Scholar
  47. Hamel C, Dalpé Y, Lapierre C, Simard RR, Smith DL (1994) Composition of the vesicular- arbuscular mycorrhizal fungi population in an old meadow as affected by pH, phosphorus and soil disturbance. Agric Ecosyst Environ 49(3):223–231CrossRefGoogle Scholar
  48. Harinikumar K, Bagyaraj D (1989) Effect of cropping sequence, fertilizers and farmyard manure on vesicular-arbuscular mycorrhizal fungi in different crops over three consecutive seasons. Biol Fertil Soils 7:173–175CrossRefGoogle Scholar
  49. Hayman DS (1975) The occurrence of mycorrhiza in crops as affected by soil fertility. Endomycorrhizas. Academic Press, London, pp 495–509Google Scholar
  50. Hendrix PF, Crossley DA Jr, Blair JM, Coleman DC, Edwards CA, Lal R, Madden P, Miller RH, House G (1990) Soil biota as compounds of sustainable agroecosystems. Sustainable agricultural systems. Stlucie Press, Delray Beach, pp 637–654Google Scholar
  51. Hepper CM (1984) Isolation and culture of VA mycorrhizal (VAM) fungi. CRC Press, Boca RatonGoogle Scholar
  52. Hijri M, Sanders IR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433:160–163PubMedCrossRefPubMedCentralGoogle Scholar
  53. Jacquelinet-Jeanmougin J, Gianinazzi-Pearson V, Gianinazzi S (1987) Endomycorrhizas in the Gentianaceae. II. Ultrastructural aspects of symbiont relationships in Gentiana lutea L. Symbiosis (USA) 3:269Google Scholar
  54. Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234PubMedCrossRefPubMedCentralGoogle Scholar
  55. Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176CrossRefGoogle Scholar
  56. Jasper DA, Abbott LK, Robson AD (1989) Soil disturbance reduces the infectivity of external hyphae of vesicular—arbuscular mycorrhizal fungi. New Phytol 112:93–99CrossRefGoogle Scholar
  57. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37(1):1–16Google Scholar
  58. Jensen A, Jakobsen I (1980) The occurrence of vesicular-arbuscular mycorrhiza in barley and wheat grown in some Danish soils with different fertilizer treatments. Plant Soil 55:403–414CrossRefGoogle Scholar
  59. Johansen A, Jakobsen I, Jensen ES (1993) Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate. Biol Fertil Soils 16(1):66–70CrossRefGoogle Scholar
  60. Johnson NC, McGRAW AC (1988) Vesicular-arbuscular mycorrhizae in taconite tailings. II. Effects of reclamation practices. Agric Ecosyst Environ 21(3–4):143–152CrossRefGoogle Scholar
  61. Joner EJ, Jakobsen I (1995) Uptake of 32 P from labelled organic matter, by mycorrhizal and non-mycorrhizal subterranean clover (Trifolium subterraneum L.). Plant Soil 172:221–227CrossRefGoogle Scholar
  62. Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234CrossRefGoogle Scholar
  63. Karthikeyan C, Selvaraj T (2009) Diversity of arbuscular mycorrhizal fungi (AMF) on the coastal saline soils of the west coast of Kerala, Southern India. World J Agric Sci 5:803–809Google Scholar
  64. Khade S, Adholeya A (2009) Arbuscular mycorrhizal association in plants growing on metal contaminated and noncontaminated soils adjoining Kanpur tanneries, Uttar Pradesh, India. Water Air Soil Pollut 202:45–56CrossRefGoogle Scholar
  65. Khade SW, Rodrigues BF (2003) Occurrence of arbuscular mycorrhizal fungi in tree species from Western Ghats of Goa, India. J Trop Forest Sci 15:320–331Google Scholar
  66. Koske R, Halvorson W (1981) Ecological studies of vesicular-arbuscular mycorrhizae in a barrier sand dune. Can J Bot 59(8):1413–1422CrossRefGoogle Scholar
  67. Koske RE, Gemma JN, Jackson N (1997) A preliminary survey of mycorrhizal fungi in putting greens. J Turfgrass Sci 73:2–8Google Scholar
  68. Kosuta S, Chabaud M, Lougnon G, Gough C, Dénarié J, Barker DG, Bécard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GED (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proc Natl Acad Sci U SA 105(28):9823–9828CrossRefGoogle Scholar
  70. Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Volume 2: perspective for value-added products and environments. Springer International Publishing, Cham, pp 1–64.  https://doi.org/10.1007/978-3-030-14846-1_1CrossRefGoogle Scholar
  71. Kumar S, Adholeya A (2016) Impact of land use and soil types on arbuscular mycorrhizal fungal diversity in tropical soil of India. Afr J Microbiol Res 10(38):1595–1606CrossRefGoogle Scholar
  72. Kumar S, Adholeya A (2018) Congruence of morphology and fatty acid methyl ester profile (FAME profile) revealed low Mycorrhizal diversity in soil contaminated with tannery sludge. Pollut Res 37(May Suppl):S71–S81Google Scholar
  73. Lakshman HC, Rajanna L, Inchal RF, Mulla FI, Srinivasulu Y (2001) Survey of VA- mycorrhizae in agroforestry and its implications on forest trees. Trop Ecol 42:283–286Google Scholar
  74. Lilly SS, Santhanakrishnan P (1999) Coir pith compost a suitable medium for mass multiplication of Glomus fasciculatum. Madras Agric J 85:240–242Google Scholar
  75. Maider P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming from clover (Trifolium repens) roots. J Appl Environ Microbiol 57(2):434–439Google Scholar
  76. Manoharachary C, Rao PR (1991) Vesicular–arbuscular mycorrhizal fungi and forest trees. In: Soerianegara I, Supriyanto (eds) Proceedings of the second Asian conference on Mycorrhiza, p 39Google Scholar
  77. Manoharachary C, Sridhar K, Singh R, Adholeya A, Suryanarayanan TS, Rawat S, Johri BN (2005) Fungal biodiversity: distribution, conservation and prospecting of fungi from India. Curr Sci 89(1):58–71Google Scholar
  78. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, Amsterdam, The NetherlandsGoogle Scholar
  79. Mathimaranhe N, Ruh R, Vullioud P, Frossard E, Jansa J (2005) Glomus intraradices dominates arbuscular mycorrhizal communities in a heavy textured agricultural soil. Mycorrhiza 16:61–66CrossRefGoogle Scholar
  80. Mathur N, Vyas P, Joshi N, Choudhary K, Purohit DK (2011) Mycorrhiza: a potent bioinoculant for sustainable agriculture. In: Pathak H, Sharma A (eds) Microbial technology “the emerging era” lap lambert. Academic Publishing Ag & Co. Kg, Dudweiller Landstr, pp 230–245Google Scholar
  81. McGonigle TP, Miller MH (1993) Mycorrhizal development and phosphorus absorption in maize under conventional and reduced tillage. Soil Sci Soc Am J 57(4):1002–1006CrossRefGoogle Scholar
  82. Mcgonigle TP, Miller MH (1996) Development of fungi below ground in association with plants growing in disturbed and undisturbed soils. Soil Biol Biochem 28:263–269CrossRefGoogle Scholar
  83. Miller DD, Domoto PA, Walker C (1985) Mycorrhizal fungi at eighteen apple rootstock plantings in the United States. New Phytol 100:379–391CrossRefGoogle Scholar
  84. Miller MH, McGonigle TP, Addy HD (1995) Functional ecology of vesicular-arbuscular mycorrhizas as influenced by phosphate fertilization and tillage in an agricultural ecosystem. Crit Rev Biotechnol 15:241–255CrossRefGoogle Scholar
  85. Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251CrossRefGoogle Scholar
  86. Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93(1):181–195CrossRefGoogle Scholar
  87. Morton JB, Bentivenga SP et al (1995) Discovery, measurement, and interpretation of diversity in arbuscular endomycorrhizal fungi (Glomales, Zygomycetes). Can J Bot 73:25–32CrossRefGoogle Scholar
  88. Mosse B, Hepper C (1975) Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiol Plant Pathol 5:215–218CrossRefGoogle Scholar
  89. Muthukumar T, Udaiyan K (2000) Arbuscular mycorrhizas of plants growing in the Western Ghats region, Southern India. Mycorrhiza 9:297–313CrossRefGoogle Scholar
  90. Nair MG, Safir GR, Siqueira JO (1991) Isolation and identification of vesicular-arbuscular mycorrhiza-stimulatory compounds. Fertil Soils 31:150–156Google Scholar
  91. Nalini PA, Byra Reddy MS, Bagyaraj D J (1987) VA mycorrhizal spore types present in the root zone of Leucaena leucocephala (LAM) de. Mycorrhiza round table proceedings of workshop, JNU, New Delhi, pp. 129–136Google Scholar
  92. Nazir A, Bareen F (2011) Synergistic effect of Glomus fasciculatum and Trichoderma pseudokoningii on Heliathus annuus to decontaminate tannery sludge from toxic metals. AJB 10(22):4612–4618Google Scholar
  93. Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83:991–1000CrossRefGoogle Scholar
  94. Oldroyd GE, Downie JA (2004) Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol 5(7):566PubMedCrossRefPubMedCentralGoogle Scholar
  95. Oldroyd GE, Downie JA (2006) Nuclear calcium changes at the core of symbiosis signalling. Curr Opin Plant Biol 9(4):351–357PubMedCrossRefPubMedCentralGoogle Scholar
  96. Oswald ET, Ferchau HA (1968) Bacterial associations of coniferous mycorrhizae. Plant Soil 28(1):187–192CrossRefGoogle Scholar
  97. Peña-Venegas C, Cardona GI et al (2007) Micorrizas arbusculares del sur de la amazonia colombiana y su relación con algunos factores fisicoquímicos y biológicos del suelo. Act Amazon 37(3):327–336CrossRefGoogle Scholar
  98. Pinion A, Wyss U et al (1999) Plants colonized by AM fungi regulates further root colonization by AM fungi through altered root exudation. Can J Bot 77:891–897Google Scholar
  99. Ragupathy S, Mahadevan A (1993) Distribution of vesicular-arbuscular mycorrhizae in the plants and rhizosphere soils of the tropical plains, Tamil Nadu, India. Mycorrhiza 3:123–136CrossRefGoogle Scholar
  100. Raman N, Sambandan K (1998) Distribution of VAM fungi in tannery effluent polluted soils of Tamil Nadu, India. Bull Environ Contam Toxicol 60:142–150PubMedCrossRefPubMedCentralGoogle Scholar
  101. Raman N, Nagarajan S, Gopinathan SK (1993) Mycorrhizal status of plant species colonizing a magnesite mine spoil in India. Biol Fertil Soils 16:76–78CrossRefGoogle Scholar
  102. Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK (2019a) Endophytic fungi: biodiversity, ecological significance, and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi: Volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham, pp 1–62.  https://doi.org/10.1007/978-3-030-10480-1_1CrossRefGoogle Scholar
  103. Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144.  https://doi.org/10.1007/978-3-030-03589-1_6CrossRefGoogle Scholar
  104. Regvar M, Vogel K et al (2003) Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. J Plant Physiol 160:615–626PubMedCrossRefPubMedCentralGoogle Scholar
  105. Rillig MC, Sosa Hernández MA, Roy J, Aguilar-Trigueros CA, Vályi K, Lehmann A (2016) Towards an integrated mycorrhizal technology: harnessing mycorrhiza for sustainable intensification in agriculture. Front Plant Sci 7:1625PubMedPubMedCentralCrossRefGoogle Scholar
  106. Sambandan K, Raman N, Kannan K (1991) Association of VAM fungi with Casuarina equisetifolia at different soil types in Tamil Nadu, India. In: Soerianegara I, Supriyanto (eds) Proceedings of second Asian conference on Mycorrhiza, pp 61–65Google Scholar
  107. Sanchez PA, Palm CA, Buol SW (2003) Fertility capability soil classification, a tool to help assess soil quality in the tropics. Geoderma 114:157–185CrossRefGoogle Scholar
  108. Sanders FE, Tinker PB, Black RLB, Palmerley SM (1977) The development of endomycorrhizal root systems: I. Spread of infection and growth-promoting effects with four species of vesicular-arbuscular endophyte. New Phytol 78(2):257–268CrossRefGoogle Scholar
  109. Schalamuk S, Velazquez S, Chidichimo H, Cabello M (2006) Fungal spore diversity of arbuscular mycorrhizal fungi associated with spring wheat: effects of tillage. Mycologia 98(1):16–22PubMedCrossRefPubMedCentralGoogle Scholar
  110. Schenck NC (1982) Methods and principles of mycorrhizal research. Am Phytopathol Soc 244:2Google Scholar
  111. Schenck N, Kinloch R (1980) Incidence of mycorrhizal fungi on six field crops in monoculture on a newly cleared woodland site. Mycologia 72(3):445–456CrossRefGoogle Scholar
  112. Schreiner RP, Bethlenfalvay GJ (1995) Mycorrhizal interactions in sustainable agriculture. Crit Rev Biotechnol 15(3–4):271–285CrossRefGoogle Scholar
  113. Schreiner RP, Koide RT (1993) Stimulation of vesicular-arbuscular mycorrhizal fungi by mycotrophic and nonmycotrophic plant root systems. Appl Environ Microbiol 59(8):2750–2752PubMedPubMedCentralGoogle Scholar
  114. Singh R, Adholeya A (2002) Biodiversity of arbuscular mycorrhizal fungi (AMF) in different agroclimatic regions of India. IMC7-conference on mycological advances, 11–17, Norway. Mol Biol Evol 4:406–425Google Scholar
  115. Siqueira JO, Sylvia DM, Gibson J, Hubbell DH (1985) Spores, germination, and germ tubes of vesicular-arbuscular mycorrhizal fungi. Can J Microbiol 31:965–972CrossRefGoogle Scholar
  116. Siqueira JO, Safir GR, Nair MG (1991) VA-mycorrhizae and mycorrhiza stimulating flavonoid compounds reduce plant herbicide injury. Plant Soil 134:233–242CrossRefGoogle Scholar
  117. Smith SE, Read DJ (1997) Growth and carbon economy of VA mycorrhizal plants. In: Mycorrhizal symbiosis. Academic Press, London, pp 105–125Google Scholar
  118. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Elsevier Academic Press, New YorkGoogle Scholar
  119. St-Arnaud M, Vujanovic V (2007) Effect of the arbuscular mycorrhizal symbiosis on plant diseases and pests. In: Mycorrhizae in crop production. Haworth, New York, pp 67–122Google Scholar
  120. Stürmer SL (2004) Effect of different fungal isolates from the same mycorrhizal community on plant growth and phosphorus uptake in soybean and red clover. Rev Bras Cienc Solo 28:611–622CrossRefGoogle Scholar
  121. Stürmer SL, Bellei MM (1994) Composition and seasonal variation of spore populations of arbuscular mycorrhizal fungi in dune soils on the island of Santa Catarina, Brazil. Can J Bot 72:359–363CrossRefGoogle Scholar
  122. Stürmer SL, Siqueira JO (2011) Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in Western Brazilian Amazon. Mycorrhiza 21(4):255–267PubMedCrossRefPubMedCentralGoogle Scholar
  123. Stutz JC, Morton JB (1996) Successive pot cultures reveal high species richness of arbuscular endomycorrhizal fungi in arid ecosystems. Can J Microbiol 74:1883–1889Google Scholar
  124. Sunilkumar CP, Garampalli HR (2010) Diversity of arbuscular mycorrhizal fungi in agricultural fields of Hassan District. World J Agric Sci 6:728–734Google Scholar
  125. Sýkorová Z, Ineichen K, Wiemken A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18(1):1–14PubMedCrossRefPubMedCentralGoogle Scholar
  126. Tamasloukht MB, Séjalon-Delmas N, Kluever A, Jauneau A, Roux C, Bécard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the Arbuscular Mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478PubMedPubMedCentralCrossRefGoogle Scholar
  127. Thapar HS, Uniyal K (1996) Effect of VAM fungi and Rhizobium on growth of Acacia nilotica in sodic and new forest soils. Indian Forester 122(11):1033–1039Google Scholar
  128. Treseder KK, Mack MC, Cross A (2004) Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecol Appl 14:1826–1838CrossRefGoogle Scholar
  129. Trufem S (1995) Ecological aspects of arbuscular mycorrhizal fungi from coastal sand dunes community of Ilha do Cardoso, SP, Brazil. Revta Brasil Bot 18:51–60Google Scholar
  130. Tsai SM, Phillips DA (1991) Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl Environ Microbiol 57:1485–1488PubMedPubMedCentralGoogle Scholar
  131. Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13(4):185–190PubMedCrossRefPubMedCentralGoogle Scholar
  132. Utomo WH, Suntari R, Arfarita N, Handayanto E (2014) Rehabilitation of artisanal small- scale gold mining land in West Lombok, Indonesia: 3. exploration of indigenous plant species and the associated mycorrhiza for phytomycoremediation of mercury contaminated soils. Am Eurasian J Sustain 8(1):34–41Google Scholar
  133. Verma A, Adholeya A (1996) Cost-economics of existing methodologies for inoculum production of vesicular-arbuscular mycorrhizal fungi. In: Concepts in mycorrhizal research. Springer, Dordrecht, pp 179–194CrossRefGoogle Scholar
  134. Vierheilig H, Bago B, Albrecht C, Poulin MJ, Piche Y (1998) Flavonoids and arbuscular-mycorrhizal fungi. Adv Exp Med Biol 439:9–34PubMedCrossRefPubMedCentralGoogle Scholar
  135. Walker C (1999) Methods for culturing and isolating arbuscular mycorrhizal fungi. Mycorrhiza News 11:2–4Google Scholar
  136. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363PubMedCrossRefPubMedCentralGoogle Scholar
  137. Wu CG, Chen ZC (1986) The Endogonaceae of Taiwan: I. A preliminary investigation on Endogonaceae of bamboo vegetation at Chi-Tou areas. Central Taiwan Taiwania 31:65–88Google Scholar
  138. Xu M, Li X, Cai X, Li X, Christie P, Zhang J (2017) Land use alters arbuscular mycorrhizal fungal communities and their potential role in carbon sequestration on the Tibetan Plateau. Sci Rep 7(1):3067PubMedPubMedCentralCrossRefGoogle Scholar
  139. Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan V, Dhaliwal HS, Saxena AK (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotech 5:45–57Google Scholar
  140. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18.  https://doi.org/10.1016/B978-0-444-63501-3.00001-6CrossRefGoogle Scholar
  141. Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi Volume 1: diversity and enzymes perspectives. Springer International Publishing, ChamCrossRefGoogle Scholar
  142. Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: perspective for value-added products and environments. Springer International Publishing, ChamCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sanjeev Kumar
    • 1
  • Joginder Singh
    • 2
  1. 1.Department of Genetics and Plant BreedingLovely Professional UniversityJalandharIndia
  2. 2.Department of BiotechnologySchool of Bioengineering and Biosciences, Lovely Professional University, JalandharPunjabIndia

Personalised recommendations