Biotechnological Applications of β-Glucosidases in Biomass Degradation

  • Sushma Mishra
  • Deepika Goyal
  • Amit Kumar
  • Prem Kumar Dantu
Part of the Fungal Biology book series (FUNGBIO)


The plant cell wall is chiefly composed of cellulose (35–50%), hemicellulose (20–35%) and lignin (10–15%). Structurally, cellulose is a simple biopolymer composed of D-glucose residues, linked by β-1,4-glucosidic bonds. It is, however, highly resistant to enzymatic hydrolysis due to its insoluble, crystalline microfibrillar structure and its complex association with lignin. Cellulose degradation requires the concerted action of three enzymes: exoglucanase (that attacks the terminal glucosidic bond), endoglucanase (that catalyses the hydrolysis of internal bonds) and β-glucosidase (that converts cellobiose to free glucose molecules). The process of cellulose degradation is often limited by the terminal step catalysed by β-glucosidases, and hence, an increased understanding of the regulatory aspects of this enzyme would help in increasing the efficiency of the reaction. β-glucosidases are naturally produced by some organisms like bacteria, fungi and termites, which are crucial for hydrolysing cellulose, the major carbohydrate produced by plants. In addition to their ecological roles, β-glucosidases find tremendous biotechnological applications in biofuel production, enhancement of flavours and nutritional quality, detoxification of cyanogenic glucosidases in food crops, waste paper recycling and many more. The fact that cellulose is the most abundant carbohydrate on earth makes it a promising source of biofuels through its conversion into sugars, followed by fermentation into ethanol. This process of lignocellulose bioconversion has an additional advantage of cellulose waste management. Hence, this chapter would mainly focus on the biotechnological applications of β-glucosidases with special emphasis on the regulations, limitations and approaches to enhance the enzyme activity in the process of lignocellulose conversion into biofuels.


Biofuel Biotechnological applications Cellulose Fungi Lignocellulose degradation β-glucosidase 



The authors would like to thank Director, DEI, for his continuous support and encouragement. SM is grateful to Dayalbagh Educational Institute, Deemed University, Agra, for sanctioning the Research Project, DEI/Minor Project/2017-18 (iv), as a start-up grant.


  1. Abdel-Naby MA, Osman MY, Abdel-Fattah AF (1999) Purification and properties of three cellobiases from Aspergillus niger A20. Appl Biochem Biotechnol 76(1):33–44PubMedCrossRefGoogle Scholar
  2. Ahmed A, Fu HN, Batool K, Bibi A (2017) Microbial β-glucosidase: sources, production and applications. J Appl Environ Microbiol 5(1):31–46Google Scholar
  3. Aït N, Creuzet N, Cattaneo J (1982) Properties of β-glucosidase purified from Clostridium thermocellum. Microbiology 128(3):569–577CrossRefGoogle Scholar
  4. An DS, Cui CH, Lee HG, Wang L, Kim SC, Lee ST, Jin F, Yu H, Chin YW, Lee HK, Im WT (2010) Identification and characterization of a novel Terrabacterginsenosidimutans sp. nov. β-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. J Appl Environ Microbiol 76(17):5827–5836CrossRefGoogle Scholar
  5. Andrić P, Meyer AS, Jensen PA, Dam-Johansen K (2010) Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: II. Quantification of inhibition and suitability of membrane reactors. Biotechnol Adv 28(3):407–425PubMedCrossRefGoogle Scholar
  6. Ávila M, Hidalgo M, Sánchez-Moreno C, Pelaez C, Requena T, de Pascual-Teresa S (2009) Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Res Int 42(10):1453–1461CrossRefGoogle Scholar
  7. Bae J, Morisaka H, Kuroda K, Ueda M (2013) Cellulosome complexes: natural biocatalysts as arming microcompartments of enzymes. J Mol Microbiol Biotechnol 23(4–5):370–378PubMedCrossRefGoogle Scholar
  8. Baffi MA, Tobal T, Lago JH, Boscolo M, Gomes E, Da-Silva R (2013) Wine aroma improvement using a β-glucosidase preparation from Aureobasidium pullulans. Appl Biochem Biotechnol 169(2):493–501PubMedCrossRefGoogle Scholar
  9. Bai H, Wang H, Sun J, Irfan M, Han M, Huang Y, Han X, Yang Q (2013) Production, purification and characterization of novel beta glucosidase from newly isolated Penicillium simplicissimum H-11 in submerged fermentation. EXCLI J 12:528–540PubMedPubMedCentralGoogle Scholar
  10. Bankova E, Bakalova N, Petrova S, Kolev D (2006) Enzymatic synthesis of oligosaccharides and alkylglycosides in water-organic media via transglycosylation of lactose. Biotechnol Biotechnol Equip 20(3):114–119CrossRefGoogle Scholar
  11. Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbial Rev 13(1):25–58CrossRefGoogle Scholar
  12. Beitel SM, Knob A (2013) Penicillium miczynskii β-glucosidase: a glucose-tolerant enzyme produced using pineapple peel as substrate. Ind Biotechnol 9(5):293–300CrossRefGoogle Scholar
  13. Beldman G, Searle VL, Rombouts FM, Voragen FG (1985) The cellulase of Trichoderma viride: purification, characterization and comparison of all detectable endoglucanases, exoglucanases and β glucosidases. Eur J Biochem 46(2):301–308CrossRefGoogle Scholar
  14. Bergmann JC, Costa OYA, Gladden JM, Singer S, Heins R, D’haeseleer P, Quirino BF (2014) Discovery of two novel β-glucosidases from an Amazon soil metagenomic library. FEMS Microbiol Lett 351(2):147–155PubMedCrossRefGoogle Scholar
  15. Bhatia Y, Mishra S, Bisaria VS (2002) Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22(4):375–407PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bhatti HN, Batool S, Afzal N (2013) Production and characterization of a novel (beta)-glucosidase from Fusarium solani. Int J Agric Biol 15(1):140–144Google Scholar
  17. Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MW, Kelly RM (2014) Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 38(3):393–448PubMedCrossRefGoogle Scholar
  18. Bok JD, Yernool DA, Eveleigh DE (1998) Purification, characterization, and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. Appl Environ Microbiol 64(12):4774–4781PubMedPubMedCentralGoogle Scholar
  19. Byun DH, Choi HJ, Lee HW, Jeon HY, Choung WJ, Shim JH (2015) Properties and applications of β glycosidase from Bacteroides thetaiotaomicron that specifically hydrolyses isoflavone glycosides. Int J Food Sci Technol 50(6):1405–1412CrossRefGoogle Scholar
  20. Cairns JR, Esen A (2010) β-Glucosidases. Cell Mol Life Sci 67(20):3389–3405CrossRefGoogle Scholar
  21. Cassia DP, Paganini JM, Rodrigues NA, Oliveira BD, Boscolo M, Silva DR, Gomes E, Bocchini MDA (2015) Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. J Appl Microbiol 118(4):928–939CrossRefGoogle Scholar
  22. Chandel AK, Chandrasekhar G, Silva MB, Silvério da Silva S (2012) The realm of cellulases in biorefinery development. Crit Rev Biotechnol 32(3):187–202PubMedCrossRefGoogle Scholar
  23. Chandra M, Kalra A, Sangwan NS, Sangwan RS (2013) Biochemical and proteomic characterization of a novel extracellular β-glucosidase from Trichoderma citrinoviride. Mol Biotechnol 53(3):289–299PubMedCrossRefGoogle Scholar
  24. Chauve M, Mathis H, Huc D, Casanave D, Monot F, Ferreira NL (2010) Comparative kinetic analysis of two fungal β-glucosidases. Biotechnol Biofuels 3(1):3. Scholar
  25. Chen H, Hayn M, Esterbauer H (1992) Purification and characterization of two extracellular β-glucosidases from Trichoderma reesei. Biochim Biophys Acta 1121(1–2):54–60PubMedCrossRefGoogle Scholar
  26. Chen P, Fu X, Ng TB, Ye XY (2011) Expression of a secretory β-glucosidase from Trichoderma reesei in Pichia pastoris and its characterization. Biotechnol Lett 33(12):2475–2479PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chen HL, Chen YC, Lu MY, Chang JJ, Wang HT, Ke HM, Wang TY, Ruan SK, Wang TY, Hung KY, Cho HY (2012) A highly efficient β-glucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5. Biotechnol Biofuels 5(1):24. Scholar
  28. Chesson A (1987) Supplementary enzymes to improve the utilization of pig and poultry diets. Recent Adv Anim Nutr 1987:71–89CrossRefGoogle Scholar
  29. Chirico WJ, Brown RD Jr (1987) Purification and characterization of a β-glucosidase from Trichoderma reesei. Eur J Biochem 165(2):333–341PubMedCrossRefGoogle Scholar
  30. Choi JY, Park AR, Kim YJ, Kim JJ, Cha CJ, Yoon JJ (2011) Purification and characterization of an extracellular beta-glucosidase produced by Phoma sp. KCTC11825BP isolated from rotten mandarin peel. J Microbiol Biotechnol 21(5):503–508PubMedCrossRefGoogle Scholar
  31. Choi HJ, Kim EA, Kim DH, Shin KS (2014) The bioconversion of red ginseng ethanol extract into compound K by Saccharomyces cerevisiae HJ-014. Mycobiology 42(3):256–261PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cui CH, Liu QM, Kim JK, Sung BH, Kim SG, Kim SC, Im WT (2013) Identification and characterization of Mucilaginibacter sp. QM49 β-glucosidase and its use in producing the pharmaceutically active minor ginsenosides, Rh1 (S) and Rg2 (S). Appl Environ Microbial 79(19):5788–5798CrossRefGoogle Scholar
  33. Daroit DJ, Simonetti A, Hertz PF, Brandelli A (2008) Purification and characterization of an extracellular β-glucosidase from Monascuspurpureus. J Microbiol Biotechnol 18(5):933–941PubMedGoogle Scholar
  34. Dashtban M, Qin W (2012) Overexpression of an exotic thermotolerant β-glucosidase in Trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw. Microb Cell Factories 11(1):63. Scholar
  35. Dashtban M, Maki M, Leung KT, Mao C, Qin W (2010) Cellulase activities in biomass conversion: measurement methods and comparison. Crit Rev Biotechnol 30(4):302–309PubMedCrossRefGoogle Scholar
  36. Dekker RF (1986) Kinetic, inhibition, and stability properties of a commercial β- D-glucosidase (cellobiase) preparation from Aspergillus niger and its suitability in the hydrolysis of lignocellulose. Biotechnol Bioeng 28(9):1438–1442PubMedCrossRefGoogle Scholar
  37. Dharmawardhana DP, Ellis BE, Carlson JE (1995) A [beta]-Glucosidase from lodgepole pine xylem specific for the lignin precursor coniferin. Plant Physiol 107(2):331–339PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dikshit R, Tallapragada P (2015) Partial purification and characterization of β-glucosidase from Monascus sanguineus. Braz Arch Biol 58(2):185–191CrossRefGoogle Scholar
  39. Druzhinina IS, Kubicek CP (2017) Genetic engineering of Trichoderma reesei cellulases and their production. Microbiol Biotechnol 10(6):1485–1499CrossRefGoogle Scholar
  40. Duenas R, Tengerdy RP, Gutierrez-Correa M (1995) Cellulase production by mixed fungi in solid-substrate fermentation of bagasse. World J Microbiol Biotechnol 11(3):333–337PubMedCrossRefGoogle Scholar
  41. Elyas KK, Mathew A, Sukumaran RK, Ali PM, Sapna K, Kumar SR, Mol KR (2010) Production optimization and properties of beta glucosidases from a marine fungus Aspergillus-SA 58. New Biotechnol 27(4):347–351CrossRefGoogle Scholar
  42. Escovar-Kousen JM, Wilson D, Irwin D (2004) Integration of computer modeling and initial studies of site-directed mutagenesis to improve cellulase activity on Cel9A from Thermobifida fusca. Appl Biochem Biotechnol.
  43. Fang W, Song R, Zhang X, Zhang X, Zhang X, Wang X, Fang Z, Xiao Y (2014) Characterization of a novel β-glucosidase from Gongronella sp. W5 and its application in the hydrolysis of soybean isoflavone glycosides. J Agric Food Chem 62(48):11688–11695PubMedCrossRefGoogle Scholar
  44. Gao Z, Van Hop D, Ando K, Hiyamuta S, Kondo R (2012) The production of β-glucosidases by Fusarium proliferatum NBRC109045 isolated from Vietnamese forest. AMB Express 2(1):49. Scholar
  45. Garrote G, Cruz JM, Domínguez H, Parajó JC (2008) Non-isothermal auto hydrolysis of barley husks: product distribution and antioxidant activity of ethyl acetate soluble fractions. J Food Eng 84(4):544–552CrossRefGoogle Scholar
  46. Garvey M, Klose H, Fischer R, Lambertz C, Commandeur U (2013) Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Biotechnol 31(10):581–593PubMedCrossRefGoogle Scholar
  47. Godfrey K, Robinson S, Barker DJ, Osmond C, Cox V (1996) Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ 312(7028):410. Scholar
  48. Gueguen Y, Chemardin P, Labrot P, Arnaud A, Galzy P (1997) Purification and characterization of an intracellular β-glucosidase from a new strain of Leuconostocmesenteroides isolated from cassava. J Appl Microbiol 82(4):469–476CrossRefGoogle Scholar
  49. Guo M, Song W, Buhain J (2015) Bioenergy and biofuels: history, status, and perspective. Renew Sustain Energy Rev 42:712–725CrossRefGoogle Scholar
  50. Gupte A, Madamwar D (1997) Solid state fermentation of lignocellulosic waste for cellulase and β‐glucosidase production by cocultivation of Aspergillus ellipticus and Aspergillus fumigatus. Biotechnol Prog 13:166CrossRefGoogle Scholar
  51. Hati S, Vij S, Singh BP, Mandal S (2015) β-Glucosidase activity and bioconversion of isoflavones during fermentation of soymilk. J Sci Food Agric 95(1):216–220PubMedCrossRefGoogle Scholar
  52. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280(2):309–316PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hernández GA, Flores MA, Ponce NP, Villagómez CJC (2016) Purification and characterization of an extracellular β-glucosidase from Sporothrix schenckii. FEBS Open Bio 6(11):1067–1077CrossRefGoogle Scholar
  54. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(6016):463–467PubMedCrossRefGoogle Scholar
  55. Hong MR, Kim YS, Park CS, Lee JK, Kim YS, Oh DK (2009) Characterization of a recombinant β-glucosidase from the thermophilic bacterium Caldicellulosiruptorsaccharolyticus. J Biosci Bioeng 108(1):36–40PubMedCrossRefGoogle Scholar
  56. Iembo T, Da Silva R, Pagnocca FC, Gomes E (2002) Production, characterization, and properties of β-glucosidase and β-xylosidase from a strain of Aureobasidium sp. Appl Biochem Microbiol 38(6):549–552CrossRefGoogle Scholar
  57. Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M (2000) Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J Nutr 130(7):1695–1699PubMedCrossRefGoogle Scholar
  58. Jeya M, Lee JK (2013) Optimization of β-glucosidase production by a strain of Stereumhirsutum and its application in enzymatic saccharification. J Microbiol Biotechnol 23(3):351–356PubMedCrossRefGoogle Scholar
  59. Jeya M, Joo AR, Lee KM, Tiwari MK, Lee KM, Kim SH, Lee JK (2010) Characterization of β-glucosidase from a strain of Penicillium purpurogenum KJS506. Appl Microbial Biotechnol 86(5):1473–1484CrossRefGoogle Scholar
  60. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112CrossRefGoogle Scholar
  61. Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1(2):119–134CrossRefGoogle Scholar
  62. Jun SY, Park KM, Choi KW, Jang MK, Kang HY, Lee SH, Cha J (2008) Inhibitory effects of arbutin-β-glycosides synthesized from enzymatic transglycosylation for melanogenesis. Biotechnol Lett 30(4):743. Scholar
  63. Kabera JN, Semana E, Mussa AR, He X (2014) Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol 2:377–392Google Scholar
  64. Karimi E, Oskoueian E, Hendra R, Oskoueian A, Jaafar HZ (2012) Phenolic compounds characterization and biological activities of Citrus aurantium bloom. Molecules 17(2):1203–1218PubMedPubMedCentralCrossRefGoogle Scholar
  65. Karnchanatat A, Petsom A, Sangvanich P, Piaphukiew J, Whalley AJ, Reynolds CD, Sihanonth P (2007) Purification and biochemical characterization of an extracellular β-glucosidase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.: Fr.) Rehm. FEMS Microbiol Lett 270(1):162–170PubMedCrossRefGoogle Scholar
  66. Kaur J, Chadha BS, Kumar BA, Kaur G, Saini HS (2007) Purification and characterization of ß-glucosidase from Melanocarpus sp. MTCC 3922. Electron J Biotechnol 10(2):260–270CrossRefGoogle Scholar
  67. Kengen SW, Luesink EJ, STAMS AJ, ZEHNDER AJ (1993) Purification and characterization of an extremely thermostable β-glucosidase from the hyperthermophilic archaeon Pyrococcusfuriosus. Eur J Biochem 213(1):305–312PubMedCrossRefGoogle Scholar
  68. Khan SA, Malla FA, Rashmi, Malav LC, Gupta N, Kumar A (2018) Potential of wastewater treating Chlorella minutissima for methane enrichment and CO2 sequestration of biogas and producing lipids. Energy 150:153–163Google Scholar
  69. Khan SA, Sharma GK, Malla FA, Kumar A, Rashmi, Gupta N (2019) Microalgae based biofertilizers: a biorefinery approach to phycoremediate wastewater and harvest biodiesel and manure. J Clean Prod 211:1412–1419Google Scholar
  70. Kittur FS, Lalgondar M, Yu HY, Bevan DR, Esen A (2007) Maize beta-glucosidase aggregating factor (BGAF) is a polyspecific jacalin-related chimeric lectin and its lectin domain is responsible for beta-glucosidase aggregation. J Biol Chem 282(10):7299PubMedCrossRefGoogle Scholar
  71. Kour D, Rana KL, Yadav N, Yadav AN, Rastegari AA, Singh C, Negi P, Singh K, Saxena AK (2019a) Technologies for biofuel production: current development, challenges, and future prospects. In: Rastegari AA, Yadav AN, Gupta A (eds) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, Cham, pp 1–50. Scholar
  72. Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019b) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, vol 2: perspective for value-added products and environments. Springer International Publishing, Cham, pp 1–64. Scholar
  73. Kovács K, Megyeri L, Szakacs G, Kubicek CP, Galbe M, Zacchi G (2008) Trichoderma atroviride mutants with enhanced production of cellulase and β-glucosidase on pretreated willow. Enzyme Microbial Technol 43(1):48–55CrossRefGoogle Scholar
  74. Krisch J, Takó M, Papp T and Vágvölgyi C (2010) Characteristics and potential use of β-glucosidases from Zygomycetes. Current research, technology and education topics in applied microbiology and microbial biotechnology: 891–896Google Scholar
  75. Kristensen JB, Felby C, Jørgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2(1):11. Scholar
  76. Kruus K, Andreacchi A, Wang WK, Wu JD (1995) Product inhibition of the recombinant CelS, an exoglucanase component of the Clostridium thermocellumcellulosome. Appl Microbiol Biotechnol 44(3–4):399–404PubMedCrossRefGoogle Scholar
  77. Kumar R, Wyman CE (2014) Strong cellulase inhibition by Mannan polysaccharides in cellulose conversion to sugars. Biotechnol Bioeng 111(7):1341–1353PubMedCrossRefGoogle Scholar
  78. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391PubMedCrossRefGoogle Scholar
  79. Kuo LC, Lee KT (2007) Cloning, expression, and characterization of two β-glucosidases from isoflavone glycoside-hydrolyzingBacillus subtilis natto. J Agric Food Chem 56(1):119–125PubMedCrossRefGoogle Scholar
  80. Kuo LC, Cheng WY, Wu RY, Huang CJ, Lee KT (2006) Hydrolysis of black soybean isoflavone glycosides by Bacillus subtilis natto. Appl Microbiol Biotechnol 73(2):314–320PubMedCrossRefGoogle Scholar
  81. Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U (2014) Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels 7(1):135. Scholar
  82. Lee HL, Chang CK, Jeng WY, Wang AH, Liang PH (2012) Mutations in the substrate entrance region of β-glucosidase from Trichoderma reesei improve enzyme activity and thermostability. Protein Eng Des Sel 25(11):733–740PubMedCrossRefGoogle Scholar
  83. Lee CK, Ibrahim D, Omar IC (2013) Enzymatic deinking of various types of waste paper: efficiency and characteristics. Process Biochem 48(2):299–305CrossRefGoogle Scholar
  84. Ling H, Ge J, Ping W, Xu X (2011) Fermentation optimization by response surface methodology for enhanced production of beta-glucosidase of Aspergillus niger HDF05. Chinese J Biotechnol 27(3):419–426Google Scholar
  85. Liu ZL, Weber SA, Cotta MA, Li SZ (2012) A new β-glucosidase producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation. Bioresour Technol 104:410–416PubMedCrossRefGoogle Scholar
  86. Lorito M, Hayes CK, Di Pietro A, Woo SL, Harman GE (1994) Purification, characterization, and synergistic activity of a glucan 1, 3-beta-glucosidase and an N-acetyl-beta-glucosaminidase from Trichoderma harzianum. Phytopathology. lISSN: 0031-949XGoogle Scholar
  87. Mackenzie LF, Wang Q, Warren RA, Withers SG (1998) Glycosynthases: mutant glycosidases for oligosaccharide synthesis. J Am Chem Soc 120(22):5583–5584CrossRefGoogle Scholar
  88. Maduagwu EN (1983) Differential effects on the cyanogenic glycoside content of fermenting cassava root pulp by β-glucosidase and microbial activities. Toxicol Lett 15(4):335–339PubMedCrossRefGoogle Scholar
  89. Mahadevan A, Gon SW, Lee DS, Bae HJ (2008) Site-directed mutagenesis and CBM engineering of Cel5A (Thermotoga maritima). FEMS Microbiol Lett 287(2):205–211PubMedCrossRefGoogle Scholar
  90. Maheshwari DK, Gohade S, Paul J, Varma A (1994) Paper mill sludge as a potential source for cellulase production by Trichoderma reesei QM 9123 and Aspergillus niger using mixed cultivation. Carbohydr Polym 23(3):161–163CrossRefGoogle Scholar
  91. Mallerman J, Papinutti L, Levin L (2015) Characterization of β-glucosidase produced by the white rot fungus Flammulina velutipes. J Microbiol Biotechnol 25(1):57–65PubMedCrossRefGoogle Scholar
  92. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38(4):522–550CrossRefGoogle Scholar
  93. Michlmayr H, Schümann C, BarreiraBraz Da Silva NM, Kulbe KD, Del Hierro AM (2010) Isolation and basic characterization of a β-glucosidase from a strain of Lactobacillus brevis isolated from a malolactic starter culture. J Appl Microbiol 108(2):550–559PubMedCrossRefGoogle Scholar
  94. Montane D, Salvado J, Torras C, Farriol X (2002) High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenergy 22(4):295–304Google Scholar
  95. Montenecourt BS, Eveleigh DE (1979) Selective screening methods for the isolation of high yielding cellulase mutants of Trichoderma reesei. Adv Chem Ser 181:289–301CrossRefGoogle Scholar
  96. Murray P, Aro N, Collins C, Grassick A, Penttilä M, Saloheimo M, Tuohy M (2004) Expression in Trichoderma reesei and characterisation of a thermostable family 3 β-glucosidase from the moderately thermophilic fungus Talaromycesemersonii. Protein Expr Purif 38(2):248–257PubMedCrossRefGoogle Scholar
  97. Nair A, Kuwahara A, Nagase A, Yamaguchi H, Yamazaki T, Hosoya M, Omura A, Kiyomoto K, Yamaguchi MA, Shimoyama T, Takahashi S (2013) Purification, gene cloning, and biochemical characterization of a β-glucosidase capable of hydrolyzingsesaminoltriglucoside from Paenibacillus sp. KB0549. PLoS One 8(4):e60538. Scholar
  98. Nakazawa H, Kawai T, Ida N, Shida Y, Kobayashi Y, Okada H, Tani S, Sumitani JI, Kawaguchi T, Morikawa Y, Ogasawara W (2012) Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus β-glucosidase 1 for efficient biomass conversion. Biotechnol Bioeng 109(1):92–99PubMedCrossRefGoogle Scholar
  99. Ng IS, Li CW, Chan SP, Chir JL, Chen PT, Tong CG, Yu SM, Ho TH (2010) High-level production of a thermoacidophilic β-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresour Technol 101(4):1310–1317PubMedCrossRefGoogle Scholar
  100. Okamoto K, Nakano H, Yatake T, Kiso T, Kitahata S (2000) Purification and some properties of a β-glucosidase from Flavobacterium johnsonae. Biosci Biotechnol Biochem 64(2):333–340PubMedCrossRefGoogle Scholar
  101. Olajuyigbe FM, Nlekerem CM, Ogunyewo OA (2016) Production and characterization of highly thermostable β-glucosidase during the biodegradation of methyl cellulose by Fusarium oxysporum. Biochem Res Int.
  102. Opassiri R, Yanling HU, Onnop WA, Akiyama T, Svasti J, Asim ES, Cairns JR (2004) Beta-glucosidase, exo-beta-glucanase and pyridoxine transglucosylase activities of rice BGlu1. Biochem J 379(1):125–131PubMedPubMedCentralCrossRefGoogle Scholar
  103. Paavilainen SA, Hellman JU, Korpela TI (1993) Purification, characterization, gene cloning, and sequencing of a new beta-glucosidase from Bacillus circulans subsp. alkalophilus. Appl Environ Microbiol 59(3):927–932PubMedPubMedCentralGoogle Scholar
  104. Pareek N, Gillgren T, Jönsson LJ (2013) Adsorption of proteins involved in hydrolysis of lignocellulose on lignins and hemicelluloses. Bioresour Technol 148:70–77PubMedCrossRefPubMedCentralGoogle Scholar
  105. Park AR, Hong JH, Kim JJ, Yoon JJ (2012) Biochemical characterization of an extracellular β-glucosidase from the fungus, Penicillium italicum, isolated from rotten citrus peel. Mycobiology 40(3):173–180PubMedPubMedCentralCrossRefGoogle Scholar
  106. Parry NJ, Beever DE, Emyr OW, Vandenberghe I, Van Beeumen J (2001) Biochemical characterization and mechanism of action of a thermostable β-glucosidase purified from Thermoascus aurantiacus. Biochem J 353(1):117–127PubMedPubMedCentralCrossRefGoogle Scholar
  107. Patel MA, Ou MS, Harbrucker R, Aldrich HC, Buszko ML, Ingram LO, Shanmugam KT (2006) Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Appl Environ Microbiol 72(5):3228–3235PubMedPubMedCentralCrossRefGoogle Scholar
  108. Pathak P, Bhardwaj NK, Singh AK (2011) Optimization of chemical and enzymatic deinking of photocopier waste paper. Bioresources 6(1):447–463Google Scholar
  109. Pei J, Pang Q, Zhao L, Fan S, Shi H (2012) Thermoanaerobacteriumthermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnol Biofuels 5(1):31. Scholar
  110. Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30–thirty years of strain improvement. Microbiology 158(1):58–68PubMedCrossRefPubMedCentralGoogle Scholar
  111. Pitson SM, Seviour RJ, McDougall BM (1997) Purification and characterization of an extracellular β-glucosidase from the filamentous fungus Acremonium persicinumand its probable role in β-glucan degradation. Enzym Microb Technol 21(3):182–190CrossRefGoogle Scholar
  112. Prasad DY, Heitmann JA, Joyce TW (1992) Enzyme deinking of black and white letterpress printed newsprint waste. Prog Pap Recycl 1(3):21–30Google Scholar
  113. Prasad S, Joshi HC, Lata, Kumar A (2009) Optimization of fermentation conditions and nutrient supplementation for high ethanol yield from sweet sorghum stalk Juice using Saccharomyces cerevisiae NCIM 3186. Biochem Cell Arch 9(1):41–44Google Scholar
  114. Prasad S, Dhanya MS, Gupta N, Kumar A (2012) Biofuels from biomass: a sustainable alternative to energy and environment. Biochem Cell Arch 12(2):255–260Google Scholar
  115. Prasad S, Kumar A, Muralikrishnna KS (2013) Assessment of ethanol yield associated characters in sweet sorghum. Maydica 58(3–4):299–303Google Scholar
  116. Prasad S, Amit K, Muralikrishna KS (2014) Biofuels production: a sustainable solution to combat climate change. Ind J Agric Sci 84(12):1443–1452Google Scholar
  117. Prasad S, Sheetal KR, Renjith PS, Kumar A, Kumar S (2019) Sweet Sorghum: An Excellent Crop for Renewable Fuels Production. In: Rastegari A, Yadav A, Gupta A. (eds) Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, vol 10. Springer, ChamGoogle Scholar
  118. Qian LC, Fu SJ, Zhou HM, Sun JY, Weng XY (2012) Optimization of fermentation parameters for β-glucosidase production by Aspergillus niger. J Anim Vet Adv 11(5):583–591CrossRefGoogle Scholar
  119. Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101(24):9624–9630PubMedCrossRefGoogle Scholar
  120. Rahikainen JL, Martin-Sampedro R, Heikkinen H, Rovio S, Marjamaa K, Tamminen T, Rojas OJ, Kruus K (2013) Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption. Bioresour Technol 133:270–278PubMedCrossRefGoogle Scholar
  121. Rahman SH, Choudhury JP, Ahmad AL, Kamaruddin AH (2007) Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresour Technol 98(3):554–559PubMedCrossRefGoogle Scholar
  122. Rajoka MI, Khan S, Latif F, Shahid R (2004) Influence of carbon and nitrogen sources and temperature on hyperproduction of a thermotolerant β-glucosidase from synthetic medium by Kluyveromycesmarxianus. Appl Biochem Biotechnol 117(2):75–92PubMedCrossRefGoogle Scholar
  123. Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK (2019a) Endophytic fungi: biodiversity, ecological significance, and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, vol 1: Diversity and enzymes perspectives. Springer International Publishing, Cham, pp 1–62. Scholar
  124. Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. Scholar
  125. Rastegari AA, Yadav AN, Gupta A (2019) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, ChamCrossRefGoogle Scholar
  126. Raza FA, Raza NA, Hameed U, Haq I, Maryam I (2011) Solid state fermentation for the production of β-glucosidase by co-culture of Aspergillus niger and A. oryzae. Pak J Bot 43(1):75–83Google Scholar
  127. Riou C, Salmon JM, Vallier MJ, Günata Z, Barre P (1998) Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Appl Environ Microbiol 64(10):3607–3614PubMedPubMedCentralGoogle Scholar
  128. Roitner M, Schalkhammer T, Pittner F (1984) Characterisation of naringinasefromAspergillusniger. Monatsheftefür Chemie/Chemical Monthly 115(10):1255–1267CrossRefGoogle Scholar
  129. Saha BC, Bothast RJ (1996) Production, purification, and characterization of a highly glucose-tolerant novel beta-glucosidase from Candida peltata. Appl Environ Microbiol 62(9):3165–3170PubMedPubMedCentralGoogle Scholar
  130. Saha BC, Freer SN, Bothast RJ (1994) Production, purification, and properties of a thermostable β-glucosidase from a color variant strain of Aureobasidium pullulans. Appl Environ Microbiol 60(10):3774–3780PubMedPubMedCentralGoogle Scholar
  131. Saloheimo M, Kuja-Panula J, Ylösmäki E, Ward M, Penttilä M (2002) Enzymatic properties and intracellular localization of the novel Trichoderma reesei β-glucosidase BGLII (Cel1A). Appl Environ Microbiol 68(9):4546–4553PubMedPubMedCentralCrossRefGoogle Scholar
  132. Sanderson K (2011) A chewy problem. Nature 474(7352):S12–S14PubMedCrossRefGoogle Scholar
  133. Santos FR, Garcia NFL, da Paz MF, Fonseca GG, Leite RSR (2016) Production and characterization of β-glucosidase from Gongronella butleri by solid-state fermentation. Afr J Biotechnol 15(16):633–641CrossRefGoogle Scholar
  134. Seo JK, Park TS, Kwon IH, Piao MY, Lee CH, Ha JK (2013) Characterization of cellulolytic and xylanolytic enzymes of Bacillus licheniformis JK7 isolated from the rumen of a native Korean goat. Asian-Australas J Anim Sci 26(1):50–58PubMedPubMedCentralCrossRefGoogle Scholar
  135. Servili M, Sordini B, Esposto S, Urbani S, Veneziani G, Di Maio I, Selvaggini R, Taticchi A (2013) Biological activities of phenolic compounds of extra virgin olive oil. Antioxidants 3(1):1–23PubMedPubMedCentralCrossRefGoogle Scholar
  136. Seshadri S, Akiyama T, Opassiri R, Kuaprasert B, Cairns JK (2009) Structural and enzymatic characterization of Os3BGlu6, a rice β-glucosidase hydrolyzing hydrophobic glycosides and (1→ 3)-and (1→ 2)-linked disaccharides. Plant Physiol 151(1):47–58PubMedPubMedCentralCrossRefGoogle Scholar
  137. Shahzadi T, Mehmood S, Irshad M, Anwar Z, Afroz A, Zeeshan N, Rashid U, Sughra K (2014) Advances in lignocellulosic biotechnology: a brief review on lignocellulosic biomass and cellulases. Adv Biosci Biotechnol 5(3):246–251CrossRefGoogle Scholar
  138. Shin KC, Nam HK, Oh DK (2013) Hydrolysis of flavanone glycosides by β-glucosidase from Pyrococcusfuriosus and its application to the production of flavanone aglycones from citrus extracts. J Agric Chem 61(47):11532–11540CrossRefGoogle Scholar
  139. Simões MF, Antunes A, Ottoni CA, Amini MS, Alam I, Alzubaidy H, Mokhtar NA, Archer JA, Bajic VB (2015) Soil and rhizosphere associated fungi in gray mangroves (Avicennia marina) from the Red Sea—a metagenomic approach. Genom Proteom Bioinf 13(5):310–320CrossRefGoogle Scholar
  140. Singh G, Verma AK, Kumar V (2016) Catalytic properties, functional attributes and industrial applications of β-glucosidases. 3 Biotech 6(1):3. Scholar
  141. Song X, Xue Y, Wang Q, Wu X (2011) Comparison of three thermostable β-glucosidases for application in the hydrolysis of soybean isoflavone glycosides. J Agric Food Chem 59(5):1954–1961PubMedCrossRefGoogle Scholar
  142. Sørensen A, Lübeck M, Lübeck P, Ahring B (2013) Fungal beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomol Ther 3(3):612–631Google Scholar
  143. Sørensen A, Andersen JJ, Ahring BK, Teller PJ, Lübeck M (2014) Screening of carbon sources for beta-glucosidase production by Aspergillus saccharolyticus. Int Biodeterior Biodegrad 93:78–83CrossRefGoogle Scholar
  144. Spiridonov NA, Wilson DB (2001) Cloning and biochemical characterization of BglC, a β-glucosidase from the cellulolytic actinomycete Thermobifida fusca. Curr Microbiol 42(4):295–301PubMedGoogle Scholar
  145. Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9(6):433–443PubMedCrossRefGoogle Scholar
  146. Stockton BC, Mitchell DJ, Grohmann K, Himmel ME (1991) Optimum β-D-glucosidase supplementation of cellulase for efficient conversion of cellulose to glucose. Biotechnol Lett 13(1):57–62CrossRefGoogle Scholar
  147. Sue M, Yamazaki K, Yajima S, Nomura T, Matsukawa T, Iwamura H, Miyamoto T (2006) Molecular and structural characterization of hexameric β-D-glucosidases in wheat and rye. Plant Physiol 141(4):1237–1247PubMedPubMedCentralCrossRefGoogle Scholar
  148. Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases-production, applications and challenges.
  149. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11PubMedCrossRefGoogle Scholar
  150. Takashima S, Nakamura A, Hidaka M, Masaki H, Uozumi T (1999) Molecular cloning and expression of the novel fungal β-glucosidase genes from Humicolagrisea and Trichoderma reesei. J Biochem 125(4):728–736PubMedCrossRefGoogle Scholar
  151. Tanaka T, Yamada R, Ogino C, Kondo A (2012) Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl Microbiol Biotechnol 95(3):577–591PubMedCrossRefGoogle Scholar
  152. Teugjas H, Väljamäe P (2013) Product inhibition of cellulases studied with 14 C-labeled cellulose substrates. Biotechnol Biofuels 6(1):104. Scholar
  153. Thomke S, Rundgren M, Eriksson S (1980) Nutritional evaluation of the white rot fungus Sporotrichumpulverulentum as a feedstuff to rats, pigs, and sheep. Biotechnol Bioeng 22(11):2285–2303CrossRefGoogle Scholar
  154. Tiwari S, Verma OP (2017) Isolation, partial purification, product formation and characterization of β-glucosidase from spikes of Hordeum vulgare. J Pharmacogn Phytochem 6(6):1657–1659Google Scholar
  155. Tiwari P, Misra BN, Sangwan NS (2013) β-Glucosidases from the fungus Trichoderma: an efficient cellulase machinery in biotechnological applications. Bio Med Res Int.
  156. Vaithanomsat P, Songpim M, Malapant T, Kosugi A, Thanapase W, Mori Y (2011) Production of β-glucosidase from a newly isolated Aspergillus species using response surface methodology. Int J Microbiol.
  157. Vasconcelos AT, Twiddy DR, Westby A, Reilly PJ (1990) Detoxification of cassava during gari preparation. Int J Food Sci Technol 25(2):198–203CrossRefGoogle Scholar
  158. Venturi LL, de Lourdes PM, Terenzi HF, dos Prazeres Melo Furriel R, Jorge JA (2002) Extracellular β-D-glucosidase from Chaetomium thermophilum var. coprophilum: production, purification and some biochemical properties. J Basic Microbiol 42(1):55–66PubMedCrossRefGoogle Scholar
  159. Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450(7169):560–565PubMedCrossRefGoogle Scholar
  160. Watson NE, Prior BA, Lategan PM, Lussi M (1984) Factors in acid treated bagasse inhibiting ethanol production from D-xylose by Pachysolentannophilus. Enzyme Microb Technol 6(10):451–456CrossRefGoogle Scholar
  161. Wong KK, Saddler JN (1992) Trichoderma xylanases, their properties and application. Crit Rev Biotechnol 12(5–6):413–435CrossRefGoogle Scholar
  162. Yadav AN, Sachan SG, Verma P, Saxena AK (2015) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693PubMedCrossRefPubMedCentralGoogle Scholar
  163. Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016a) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307PubMedCrossRefPubMedCentralGoogle Scholar
  164. Yadav PS, Shruthi K, Prasad BS, Chandra MS (2016b) Enhanced production of β-glucosidase by new strain Aspergillus protuberus on solid state fermentation in rice husk. Int J Curr Microbiol App Sci 5(12):551–564CrossRefGoogle Scholar
  165. Yadav A, Verma P, Kumar R, Kumar V, Kumar K (2017a) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22Google Scholar
  166. Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan V, Dhaliwal HS, Saxena AK (2017b) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57Google Scholar
  167. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. Scholar
  168. Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi Volume 1: diversity and enzymes perspectives. Springer International Publishing, ChamCrossRefGoogle Scholar
  169. Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: perspective for value-added products and environments. Springer International Publishing, ChamCrossRefGoogle Scholar
  170. Yan Q, Zhou XW, Zhou W, Li XW, Feng MQ, Zhou P (2008) Purification and properties of a novel beta-glucosidase, hydrolyzing ginsenoside Rb1 to CK, from PaecilomycesBainier. J Microbiol Biotechnol 18(6):1081–1089PubMedGoogle Scholar
  171. Yan FY, Xia W, Zhang XX, Chen S, Nie XZ, Qian LC (2016) Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones. J Zhejiang Univ Sci B 17(6):455–464PubMedPubMedCentralCrossRefGoogle Scholar
  172. Yang L, Ning ZS, Shi CZ, Chang ZY, Huan LY (2004) Purification and characterization of an isoflavone-conjugates-hydrolyzing β-glucosidase from endophytic bacterium. J Agric Food Chem 52(7):1940–1944PubMedCrossRefGoogle Scholar
  173. Yang S, Wang L, Yan Q, Jiang Z, Li L (2009) Hydrolysis of soybean isoflavone glycosides by a thermostable β-glucosidase from Paecilomycesthermophila. Food Chem 115(4):1247–1252CrossRefGoogle Scholar
  174. Yoon JJ, Kim KY, Cha CJ (2008) Purification and characterization of thermostable β-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. J Microbiol 46(1):51–55PubMedCrossRefGoogle Scholar
  175. You HJ, Ahn HJ, Kim JY, Wu QQ, Ji GE (2015) High expression of β-glucosidase in Bifidobacterium bifidum BGN4 and application in conversion of isoflavone glucosides during fermentation of soy milk. J Microbiol Biotechnol 25(4):469–478PubMedCrossRefGoogle Scholar
  176. Yun SI, Jeong CS, Chung DK, Choi HS (2001) Purification and some properties of a β-glucosidase from Trichoderma harzianum type C-4. Biosci Biotechnol Biochem 65(9):2028–2032PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sushma Mishra
    • 1
  • Deepika Goyal
    • 1
  • Amit Kumar
    • 2
  • Prem Kumar Dantu
    • 1
  1. 1.Department of BotanyDayalbagh Educational Institute, Deemed UniversityDayalbagh, AgraIndia
  2. 2.Host Plant SectionCentral Muga Eri Research & Training Institute, Central Silk Board, LahdoigarhAssamIndia

Personalised recommendations