Nuclear Medicine Imaging of Infection/Inflammation by PET/CT and PET/MR

  • Barbara Juarez Amorim
  • Benedikt Michael Schaarschmidt
  • Johannes Grueneisen
  • Shahein Tajmir
  • Lale Umutlu
  • Alberto Signore
  • Onofrio Antonio CatalanoEmail author


Morphologic imaging, like ultrasound (US), computed tomography (CT), and magnetic resonance (MR) are first-line imaging modalities used to evaluate abdominopelvic pathologies. They are available on a large scale and are cost-effective, and, in the case of US and MR, they are also radiation-free. However, in some cases, reaching a diagnosis only on the basis of morphologic imaging might be challenging.


  1. 1.
    Ford AC, Moayyedi P, Hanauer SB. Ulcerative colitis. BMJ. 2013;346:f432.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sleisenger MH, Feldeman M, Friedman LS, Brandt LJ, editors. Sleisenger and Fordtran’s gastrointestinal and liver disease: pathophysiology, diagnosis, management. 9th ed. Philadelphia: Saunders/Elsevier; 2010.Google Scholar
  3. 3.
    Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2018;390(10114):2769–78.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Panes J, Bouhnik Y, Reinisch W, Stoker J, Taylor SA, Baumgart DC, et al. Imaging techniques for assessment of inflammatory bowel disease: joint ECCO and ESGAR evidence-based consensus guidelines. J Crohns Colitis. 2013;7(7):556–85.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Signore A, Glaudemans AWJM, Gheysens O, Lauri C, Catalano OA. Nuclear medicine imaging in pediatric infection or chronic inflammatory diseases. Semin Nucl Med. 2017;47(3):286–303.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Palestro CJ, et al. Society of Nuclear Medicine Procedure Guideline for 99mTc-exametazime (HMPAO)-labeled leukocyte scintigraphy for suspected infection/inflammation. 2004. Accessed 1 Apr 2019.Google Scholar
  7. 7.
    Aydin F, Dinçer D, Güngör F, Boz A, Akça S, Yildiz A, et al. Technetium-99m hexamethyl propylene amine oxime-labeled leukocyte scintigraphy at three different times in active ulcerative colitis: comparison with colonoscopy and clinico-biochemical parameters in the assessment of disease extension and severity. Ann Nucl Med. 2008;22(5):371–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang J, Li L-F, Zhu Y-J, Qiu H, Xu Q, Yang J, et al. Diagnostic performance of 18F-FDG-PET versus scintigraphy in patients with inflammatory bowel disease: a meta-analysis of prospective literature. Nucl Med Commun. 2014;35(12):1233–46.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Okuyucu K, Alagoz E, Demirbas S, Ince S, Karakas A, Karacalioglu O, et al. Evaluation of predictor variables of diagnostic [18F] FDG-PET/CT in fever of unknown origin. Q J Nucl Med Mol Imaging. 2018;62(3):313–20.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Skehan S, Issenman R, Mernagh J, Nahmias C, Jacobson K. F-fluorodeoxyglucose positron tomography in diagnosis of paediatric inflammatory bowe l disease. Lancet. 1999;354(9181):836–7.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Däbritz J, Jasper N, Loeffler M, Weckesser M, Foell D. Noninvasive assessment of pediatric inflammatory bowel disease with 18F-fluorodeoxyglucose-positron emission tomography and computed tomography. Eur J Gastroenterol Hepatol. 2011;23(1):81–9.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Löffler M, Weckesser M, Franzius C, Schober O, Zimmer KP. High diagnostic value of 18F-FDG-PET in pediatric patients with chronic inflammatory bowel disease. Ann N Y Acad Sci. 2006;1072:379–85.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Perlman SB, Hall BS, Reichelderfer M. PET/CT imaging of inflammatory bowel disease. Semin Nucl Med. 2013;43(6):420–6.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Treglia G, Quartuccio N, Sadeghi R, Farchione A, Caldarella C, Bertagna F, et al. Diagnostic performance of fluorine-18-fluorodeoxyglucose positron emission tomography in patients with chronic inflammatory bowel disease: a systematic review and a meta-analysis. J Crohns Colitis. 2013;7(5):345–54.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Saboury B, Salavati A, Brothers A, Basu S, Kwee TC, Lam MGEH, et al. FDG PET/CT in Crohn’s disease: correlation of quantitative FDG PET/CT parameters with clinical and endoscopic surrogate markers of disease activity. Eur J Nucl Med Mol Imaging. 2014;41(4):605–14.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Shyn PB, Mortele KJ, Britz-Cunningham SH, Friedman S, Odze RD, Burakoff R, et al. Low-dose 18F-FDG PET/CT enterography: improving on CT enterography assessment of patients with Crohn disease. J Nucl Med. 2010;51(12):1841–8.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Groshar D, Bernstine H, Stern D, Sosna J, Eligalashvili M, Gurbuz EG, et al. PET/CT enterography in Crohn disease: correlation of disease activity on CT enterography with 18F-FDG uptake. J Nucl Med. 2010;51(7):1009–14.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Das CJ, Makharia GK, Kumar R, Kumar R, Tiwari RP, Sharma R, et al. PET/CT colonography: a novel non-invasive technique for assessment of extent and activity of ulcerative colitis. Eur J Nucl Med Mol Imaging. 2010;37(4):714–21.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Epelboym Y, Shyn PB, Chick JFB, Hamilton MJ, OʼConnor SD, Silverman SG, et al. Crohn disease: FDG PET/CT before and after initial dose of anti-tumor necrosis factor therapy to predict long-term response. Clin Nucl Med. 2017;42(11):837–41.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Spier BJ, Perlman SB, Jaskowiak CJ, Reichelderfer M. PET/CT in the evaluation of inflammatory bowel disease: studies in patients before and after treatment. Mol Imaging Biol. 2010;12(1):85–8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schäfer JF, Gatidis S, Schmidt H, Gückel B, Bezrukov I, Pfannenberg CA, et al. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology. 2014;273(1):220–31.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pellino G, Nicolai E, Catalano OA, Campione S, D’Armiento FP, Salvatore M, et al. PET/MR versus PET/CT imaging: impact on the clinical management of small-bowel Crohn’s disease. J Crohns Colitis. 2016;10(3):277–85.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Catalano OA, Gee MS, Nicolai E, Selvaggi F, Pellino G, Cuocolo A, et al. Evaluation of quantitative PET/MR enterography biomarkers for discrimination of inflammatory strictures from fibrotic strictures in Crohn disease. Radiology. 2016;278(3):792–800.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Li Y, Langhorst J, Koch AK, Demircioglu A, Nensa F, Kirchner J, et al. Assessment of ileocolonic inflammation in Crohn’s disease—which surrogate marker is better? MaRIA, Clermont or PET-MR index? Initial results of a feasibility trial. J Nucl Med. 2019;60(6):851–7.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jamar F, Versari A, Galli F, Lecouvet F, Signore A. Molecular imaging of inflammatory arthritis and related disorders. Semin Nucl Med. 2018;48(3):277–90.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Misra DP, Wakhlu A, Agarwal V, Danda D. Recent advances in the management of Takayasu arteritis. Int J Rheum Dis. 2019;22(Suppl 1):60–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lee S-W, Kim S-J, Seo Y, Jeong SY, Ahn B-C, Lee J. F-18 FDG PET for assessment of disease activity of large vessel vasculitis: a systematic review and meta-analysis. J Nucl Cardiol. 2019;26(1):59–67.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Blockmans D, de Ceuninck L, Vanderschueren S, Knockaert D, Mortelmans L, Bobbaers H. Repetitive 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a prospective study of 35 patients. Arthritis Rheum. 2006;55(1):131–7.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Slart RHJA, Writing Group, Reviewer Group, Members of EANM Cardiovascular, Members of EANM Infection & Inflammation, Members of Committees, SNMMI Cardiovascular, et al. FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: joint procedural recommendation of the EANM, SNMMI, and the PET Interest Group (PIG), and endorsed by the ASNC. Eur J Nucl Med Mol Imaging. 2018;45(7):1250–69.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Grayson PC, Alehashemi S, Bagheri AA, Civelek AC, Cupps TR, Kaplan MJ, et al. 18 F-fluorodeoxyglucose-positron emission tomography as an imaging biomarker in a prospective, longitudinal cohort of patients with large vessel vasculitis. Arthritis Rheumatol. 2018;70(3):439–49.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Einspieler I, Thürmel K, Pyka T, Eiber M, Wolfram S, Moog P, et al. Imaging large vessel vasculitis with fully integrated PET/MRI: a pilot study. Eur J Nucl Med Mol Imaging. 2015;42(7):1012–24.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Vaglio A, Salvarani C, Buzio C. Retroperitoneal fibrosis. Lancet. 2006;367(9506):241–51.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Grozdic Milojevic IT, Milojevic B, Sobic-Saranovic DP, Artiko VM. Impact of hybrid molecular imaging in retroperitoneal fibrosis: a systematic review. Rheumatol Int. 2018;38(2):179–87.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ruhlmann V, Poeppel TD, Brandt AS, Grüneisen J, Ruhlmann M, Theysohn JM, et al. (18)F-FDG PET/MRI evaluation of retroperitoneal fibrosis: a simultaneous multiparametric approach for diagnosing active disease. Eur J Nucl Med Mol Imaging. 2016;43(9):1646–52.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Thuermel K, Einspieler I, Wolfram S, Moog P, Meier R, Schwaiger M, et al. Disease activity and vascular involvement in retroperitoneal fibrosis: first experience with fully integrated 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging compared to clinical and laboratory parameters. Clin Exp Rheumatol. 2017;35 Suppl 103(1):146–54.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Jouret F, Lhommel R, Beguin C, Devuyst O, Pirson Y, Hassoun Z, et al. Positron-emission computed tomography in cyst infection diagnosis in patients with autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2011;6(7):1644–50.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wan C-H, Tseng J-R, Lee M-H, Yang L-Y, Yen T-C. Clinical utility of FDG PET/CT in acute complicated pyelonephritis-results from an observational study. Eur J Nucl Med Mol Imaging. 2018;45(3):462–70.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Pijl JP, Glaudemans AWJM, Slart RHJA, Kwee TC. 18F-FDG PET/CT in autosomal dominant polycystic kidney disease patients with suspected cyst infection. J Nucl Med. 2018;59(11):1734–41.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kwon HW, Lee H-Y, Hwang Y-H, Park HC, Ahn C, Kang KW. Diagnostic performance of 18F-FDG-labeled white blood cell PET/CT for cyst infection in patients with autosomal dominant polycystic kidney disease: a prospective study. Nucl Med Commun. 2016;37(5):493–8.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Fan H, Wang T-T, Ren G, Fu H-L, Wu X-R, Chu C-T, et al. Characterization of tubo-ovarian abscess mimicking adnexal masses: comparison between contrast-enhanced CT, 18F-FDG PET/CT and MRI. Taiwan J Obstet Gynecol. 2018;57(1):40–6.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fraum TJ, Fowler KJ, McConathy J, Dehdashti F. Indeterminate findings on oncologic PET/CT: what difference does PET/MRI make? Nucl Med Mol Imaging. 2016;50(4):292–9.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ratanaprasatporn L, Uyeda JW, Wortman JR, Richardson I, Sodickson AD. Multimodality imaging, including dual-energy CT, in the evaluation of gallbladder disease. Radiographics. 2018;38(1):75–89.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ziessman HA. Hepatobiliary scintigraphy in 2014. J Nucl Med. 2014;55(6):967–75.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Aparici CM, Win AZ. Acute calculous cholecystitis missed on computed tomography and ultrasound but diagnosed with fluorodeoxyglucose-positron emission tomography/computed tomography. J Clin Imaging Sci. 2016;6:31.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Manohar K, Mittal BR, Bhattacharya A, Radotra BD, Verma GR. Intense FDG activity in a case of xanthogranulomatous cholecystitis without elevated fluorothymidine activity. Clin Nucl Med. 2013;38(4):e205–6.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Cheng M-F, Guo YL, Yen R-F, Chen Y-C, Ko C-L, Tien Y-W, et al. Clinical utility of FDG PET/CT in patients with autoimmune pancreatitis: a case-control study. Sci Rep. 2018;8(1):3651.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sahani DV, Bonaffini PA, Catalano OA, Guimaraes AR, Blake MA. State-of-the-art PET/CT of the pancreas: current role and emerging indications. Radiographics. 2012;32(4):1133–58; discussion 1158CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Rauscher I, Eiber M, Algül H, Siveke JT, Weirich G, Schlitter AM, et al. Multiparametric 18F-FDG PET/MR follow-up in a patient with autoimmune pancreatitis. Eur J Hybrid Imaging. 2017;1(1):11.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Issa K, Diebo B, Faloon M, et al. The Epidemiology of Vertebral Osteomyelitis in the United States From 1998 to 2013. Clin Spine Surg. 2018;31(2):E102–8. Accessed 19 May 2019.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Diehn FE. Imaging of spine infection. Radiol Clin North Am. 2012;50(4):777–98.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lener S, Hartmann S, Barbagallo GMV, Certo F, Thomé C, Tschugg A. Management of spinal infection: a review of the literature. Acta Neurochir. 2018;160(3):487–96.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Raghavan M, Lazzeri E, Palestro CJ. Imaging of spondylodiscitis. Semin Nucl Med. 2018;48(2):131–47.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zimmerli W. Vertebral osteomyelitis. N Engl J Med. 2010;362(11):1022–9.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kasalak Ö, Wouthuyzen-Bakker M, Adams HJA, et al. CT-guided biopsy in suspected spondylodiscitis: microbiological yield, impact on antimicrobial treatment, and relationship with outcome. Skeletal Radiol. 2018;47(10):1383–91.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Özmen D, Özkan N, Guberina N, et al. Computed-tomography-guided biopsy in suspected spondylodiscitis: Single-center experience including 201 biopsy procedures. Orthop Rev (Pavia). 2019;11(1):7793. Accessed 16 May 2019.CrossRefGoogle Scholar
  56. 56.
    Gotthardt M, Bleeker-Rovers CP, Boerman OC, Oyen WJG. Imaging of inflammation by PET, conventional scintigraphy, and other imaging techniques. J Nucl Med. 2010;51(12):1937–49.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Kouijzer IJE, Scheper H, de Rooy JWJ, et al. The diagnostic value of 18F–FDG-PET/CT and MRI in suspected vertebral osteomyelitis—a prospective study. Eur J Nucl Med Mol Imaging. 2018;45(5):798–805.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Skanjeti A, Penna D, Douroukas A, et al. PET in the clinical work-up of patients with spondylodiscitis: a new tool for the clinician? Q J Nucl Med Mol Imaging. 2012;56(6):569–76.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Smids C, Kouijzer IJE, Vos FJ, et al. A comparison of the diagnostic value of MRI and 18F-FDG-PET/CT in suspected spondylodiscitis. Infection. 2017;45(1):41–9.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kim S-J, Pak K, Kim K, Lee J. Comparing the diagnostic accuracies of F-18 fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for the detection of spondylodiscitis. Spine. 2019;44(7):E414–22. Accessed 16 May 2019.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Fuster D, Tomás X, Mayoral M, et al. Prospective comparison of whole-body 18F-FDG PET/CT and MRI of the spine in the diagnosis of haematogenous spondylodiscitis. Eur J Nucl Med Mol Imaging. 2015;42(2):264–71.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Soussan M. Comments on Fuster et al.: prospective comparison of whole-body 18F-FDG PET/CT and MRI of the spine in the diagnosis of haematogenous spondylodiscitis. Eur J Nucl Med Mol Imaging. 2015;42(2):355.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Winter FD, Gemmel F, Wiele CVD, Poffijn B, Uyttendaele D, Dierckx R. 18-Fluorine fluorodeoxyglucose positron emission tomography for the diagnosis of infection in the postoperative spine. Spine. 2003;28(12):1314–9.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Hartmann A, Eid K, Dora C, Trentz O, von Schulthess GK, Stumpe KDM. Diagnostic value of 18F-FDG PET/CT in trauma patients with suspected chronic osteomyelitis. Eur J Nucl Med Mol Imaging. 2007;34(5):704–14.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Bagrosky BM, Hayes KL, Koo PJ, Fenton LZ. 18F-FDG PET/CT evaluation of children and young adults with suspected spinal fusion hardware infection. Pediatr Radiol. 2013;43(8):991–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Lee YH, Lim D, Kim E, Kim S, Song H-T, Suh J-S. Usefulness of slice encoding for metal artifact correction (SEMAC) for reducing metallic artifacts in 3-T MRI. Magn Reson Imaging. 2013;31(5):703–6.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Stumpe KDM, Zanetti M, Weishaupt D, Hodler J, Boos N, von Schulthess GK. FDG positron emission tomography for differentiation of degenerative and infectious endplate abnormalities in the lumbar spine detected on MR imaging. Am J Roentgenol. 2002;179(5):1151–7.CrossRefGoogle Scholar
  68. 68.
    Ohtori S, Suzuki M, Koshi T, et al. 18F-fluorodeoxyglucose-PET for patients with suspected spondylitis showing modic change. Spine. 2010;35(26):E1599–603. Accessed 31 May 2019.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Gillams AR, Chaddha B, Carter AP. MR appearances of the temporal evolution and resolution of infectious spondylitis. Am J Roentgenol. 1996;166(4):903–7.CrossRefGoogle Scholar
  70. 70.
    Zarrouk V, Feydy A, Sallès F, et al. Imaging does not predict the clinical outcome of bacterial vertebral osteomyelitis. Rheumatology (Oxford). 2007;46(2):292–5.CrossRefGoogle Scholar
  71. 71.
    Euba G, Narváez JA, Nolla JM, et al. Long-term clinical and radiological magnetic resonance imaging outcome of abscess-associated spontaneous pyogenic vertebral osteomyelitis under conservative management. Semin Arthritis Rheum. 2008;38(1):28–40.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kowalski TJ, Layton KF, Berbari EF, et al. Follow-up MR imaging in patients with pyogenic spine infections: lack of correlation with clinical features. Am J Neuroradiol. 2007;28(4):693–9.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Niccoli Asabella A, Iuele F, Simone F, et al. Role of (18)F-FDG PET/CT in the evaluation of response to antibiotic therapy in patients affected by infectious spondylodiscitis. Hell J Nucl Med. 2015;18(Suppl 1):17–22.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Dauchy F-A, Dutertre A, Lawson-Ayayi S, et al. Interest of [18F]fluorodeoxyglucose positron emission tomography/computed tomography for the diagnosis of relapse in patients with spinal infection: a prospective study. Clin Microbiol Infect. 2016;22(5):438–43.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Glaudemans AWJM, Quintero AM, Signore A. PET/MRI in infectious and inflammatory diseases: will it be a useful improvement? Eur J Nucl Med Mol Imaging. 2012;39(5):745–9.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Fahnert J, Purz S, Jarvers J-S, et al. Use of simultaneous 18F-FDG PET/MRI for the detection of spondylodiskitis. J Nucl Med. 2016;57(9):1396–401.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Hulsen DJW, Geurts J, Arts JJ, Loeffen D, Mitea C, Vöö SA. Hybrid FDG-PET/MR imaging of chronic osteomyelitis: a prospective case series. Eur J Hybrid Imaging. 2019;3(1):7.CrossRefGoogle Scholar
  78. 78.
    Nanni C, Errani C, Boriani L, et al. 68Ga-citrate PET/CT for evaluating patients with infections of the bone: preliminary results. J Nucl Med. 2010;51(12):1932–6.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Ebenhan T, Sathekge MM, Lengana T, et al. 68Ga-NOTA-functionalized ubiquicidin: cytotoxicity, biodistribution, radiation dosimetry, and first-in-human PET/CT imaging of infections. J Nucl Med. 2018;59(2):334–9.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Mukherjee A, Bhatt J, Shinto A, et al. 68Ga-NOTA-ubiquicidin fragment for PET imaging of infection: from bench to bedside. J Pharm Biomed Anal. 2018;159:245–51.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Bhusari P, Bhatt J, Sood A, et al. Evaluating the potential of kit-based 68Ga-ubiquicidin formulation in diagnosis of infection: a pilot study: 68: Ga. Nucl Med Commun. 2019;40(3):228.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Barbara Juarez Amorim
    • 1
    • 2
    • 3
  • Benedikt Michael Schaarschmidt
    • 4
  • Johannes Grueneisen
    • 4
  • Shahein Tajmir
    • 1
  • Lale Umutlu
    • 4
  • Alberto Signore
    • 5
  • Onofrio Antonio Catalano
    • 1
    • 2
    • 6
    Email author
  1. 1.Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonUSA
  3. 3.Division of Nuclear MedicineState University of Campinas (UNICAMP)CampinasBrazil
  4. 4.Department of Diagnostic and Interventional Radiology and NeuroradiologyUniversity Hospital EssenEssenGermany
  5. 5.Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine“Sapienza” University of RomeRomeItaly
  6. 6.Department of RadiologyParthenope UniversityNaplesItaly

Personalised recommendations