Soft and Hard Probes of QCD Topological Structures in Relativistic Heavy-Ion Collisions pp 101-112 | Cite as
Jet Energy-Loss Simulations
Chapter
First Online:
Abstract
Medium modification observables for high transverse momentum hadrons serve as the hard probe of the evolution history of the QCD matter produced in such collisions, as well as its constituent. CUJET/CIBJET framework is a sophisticated simulation tool that allows the quantitative soft-hard event engineering study. In this chapter we introduce the details of CUJET/CIBJET framework, in particular how elastic and inelastic energy loss is simulated, via collisions with chromo-electric and magnetic components.
Keywords
Jet energy loss CUJET CIBJETReferences
- 1.J. Liao, E. Shuryak, Phys. Rev. Lett. 102, 202302 (2009). https://doi.org/10.1103/PhysRevLett.102.202302 ADSCrossRefGoogle Scholar
- 2.X. Zhang, J. Liao, Phys. Rev. C87, 044910 (2013). https://doi.org/10.1103/PhysRevC.87.044910 ADSGoogle Scholar
- 3.X. Zhang, J. Liao, Phys. Rev. C89(1), 014907 (2014). https://doi.org/10.1103/PhysRevC.89.014907 ADSGoogle Scholar
- 4.S.K. Das, F. Scardina, S. Plumari, V. Greco, Phys. Lett. B747, 260 (2015). https://doi.org/10.1016/j.physletb.2015.06.003 ADSCrossRefGoogle Scholar
- 5.W.A. Horowitz, M. Gyulassy, Nucl. Phys. A872, 265 (2011). https://doi.org/10.1016/j.nuclphysa.2011.09.018 ADSCrossRefGoogle Scholar
- 6.B. Betz, M. Gyulassy, Phys. Rev. C86, 024903 (2012). https://doi.org/10.1103/PhysRevC.86.024903 ADSGoogle Scholar
- 7.K.M. Burke et al., Phys. Rev. C90(1), 014909 (2014). https://doi.org/10.1103/PhysRevC.90.014909 ADSGoogle Scholar
- 8.A. Buzzatti, M. Gyulassy, Phys. Rev. Lett. 108, 022301 (2012). https://doi.org/10.1103/PhysRevLett.108.022301 ADSCrossRefGoogle Scholar
- 9.J. Xu, A. Buzzatti, M. Gyulassy, J. High Energy Phys. 08, 063 (2014). https://doi.org/10.1007/JHEP08(2014)063 ADSCrossRefGoogle Scholar
- 10.M. Cacciari, P. Nason, R. Vogt, Phys. Rev. Lett. 95, 122001 (2005). https://doi.org/10.1103/PhysRevLett.95.122001 ADSCrossRefGoogle Scholar
- 11.B.A. Kniehl, G. Kramer, B. Potter, Nucl. Phys. B582, 514 (2000). https://doi.org/10.1016/S0550-3213(00)00303-5 ADSCrossRefGoogle Scholar
- 12.C. Peterson, D. Schlatter, I. Schmitt, P.M. Zerwas, Phys. Rev. D27, 105 (1983). https://doi.org/10.1103/PhysRevD.27.105 ADSGoogle Scholar
- 13.J. Xu, J. Liao, M. Gyulassy, Chin. Phys. Lett. 32(9), 092501 (2015). https://doi.org/10.1088/0256-307X/32/9/092501 ADSCrossRefGoogle Scholar
- 14.J. Xu, J. Liao, M. Gyulassy, J. High Energy Phys. 02, 169 (2016). https://doi.org/10.1007/JHEP02(2016)169; A.M. Polyakov, JETP Lett. 20, 194 (1974). [,300(1974)]; B.G. Zakharov, JETP Lett. 88, 781 (2008). https://doi.org/10.1134/S0021364008240016
- 15.JET Collaboration, DOE-DUKE-5396-1 (2015). https://doi.org/10.2172/1242882; B.G. Zakharov, JETP Lett. 101(9), 587 (2015). https://doi.org/10.1134/S0021364015090131. [Pisma Zh. Eksp. Teor. Fiz.101,no.9,659(2015)]
- 16.N. Armesto et al., Phys. Rev. C86, 064904 (2012). https://doi.org/10.1103/PhysRevC.86.064904 ADSGoogle Scholar
- 17.Y.T. Chien, A. Emerman, Z.B. Kang, G. Ovanesyan, I. Vitev, Phys. Rev. D93(7), 074030 (2016). https://doi.org/10.1103/PhysRevD.93.074030 ADSGoogle Scholar
- 18.E. Bianchi, J. Elledge, A. Kumar, A. Majumder, G.Y. Qin, C. Shen (2017). arXiv:1702.00481Google Scholar
- 19.S. Cao, T. Luo, G.Y. Qin, X.N. Wang, Phys. Lett. B777, 255 (2018). https://doi.org/10.1016/j.physletb.2017.12.023 ADSCrossRefGoogle Scholar
- 20.M.H. Thoma, M. Gyulassy, Nucl. Phys. B351, 491 (1991). https://doi.org/10.1016/S0550-3213(05)80031-8 ADSCrossRefGoogle Scholar
- 21.J.D. Bjorken, FERMILAB-PUB-82-059-THY (1982)Google Scholar
- 22.S. Peigne, A. Peshier, Phys. Rev. D77, 114017 (2008). https://doi.org/10.1103/PhysRevD.77.114017 ADSGoogle Scholar
- 23.M. Gyulassy, X.n. Wang, Nucl. Phys. B420, 583 (1994). https://doi.org/10.1016/0550-3213(94)90079-5 ADSCrossRefGoogle Scholar
- 24.M. Gyulassy, P. Levai, I. Vitev, Nucl. Phys. B594, 371 (2001). https://doi.org/10.1016/S0550-3213(00)00652-0 ADSCrossRefGoogle Scholar
- 25.M. Djordjevic, M. Gyulassy, Nucl. Phys. A733, 265 (2004). https://doi.org/10.1016/j.nuclphysa.2003.12.020 ADSCrossRefGoogle Scholar
- 26.M. Djordjevic, U.W. Heinz, Phys. Rev. Lett. 101, 022302 (2008). https://doi.org/10.1103/PhysRevLett.101.022302 ADSCrossRefGoogle Scholar
- 27.J. Liao, E. Shuryak, Phys. Rev. C75, 054907 (2007). https://doi.org/10.1103/PhysRevC.75.054907 ADSGoogle Scholar
- 28.J. Liao, E. Shuryak, Phys. Rev. C77, 064905 (2008). https://doi.org/10.1103/PhysRevC.77.064905 ADSGoogle Scholar
- 29.J. Liao, E. Shuryak, Phys. Rev. D82, 094007 (2010). https://doi.org/10.1103/PhysRevD.82.094007 ADSGoogle Scholar
- 30.J. Liao, E. Shuryak, Phys. Rev. Lett. 101, 162302 (2008). https://doi.org/10.1103/PhysRevLett.101.162302 ADSCrossRefGoogle Scholar
- 31.J. Liao, E. Shuryak, Phys. Rev. Lett. 109, 152001 (2012). https://doi.org/10.1103/PhysRevLett.109.152001 ADSCrossRefGoogle Scholar
- 32.B.G. Zakharov, JETP Lett. 88, 781 (2008). https://doi.org/10.1134/S0021364008240016 ADSCrossRefGoogle Scholar
- 33.L. Randall, R. Rattazzi, E.V. Shuryak, Phys. Rev. D59, 035005 (1999). https://doi.org/10.1103/PhysRevD.59.035005 ADSGoogle Scholar
- 34.H. Liu, K. Rajagopal, U.A. Wiedemann, J. High Energy Phys. 03, 066 (2007). https://doi.org/10.1088/1126-6708/2007/03/066 ADSCrossRefGoogle Scholar
- 35.R. Baier, A.H. Mueller, D. Schiff, Phys. Lett. B649, 147 (2007). https://doi.org/10.1016/j.physletb.2007.03.048 ADSCrossRefGoogle Scholar
- 36.H. Song, U.W. Heinz, Phys. Rev. C78, 024902 (2008). https://doi.org/10.1103/PhysRevC.78.024902 ADSGoogle Scholar
- 37.C. Shen, U. Heinz, P. Huovinen, H. Song, Phys. Rev. C82, 054904 (2010). https://doi.org/10.1103/PhysRevC.82.054904 ADSGoogle Scholar
- 38.T. Renk, H. Holopainen, U. Heinz, C. Shen, Phys. Rev. C83, 014910 (2011). https://doi.org/10.1103/PhysRevC.83.014910 ADSGoogle Scholar
- 39.H. Song, S.A. Bass, U. Heinz, T. Hirano, C. Shen, Phys. Rev. Lett. 106, 192301 (2011). https://doi.org/10.1103/PhysRevLett.106.192301, https://doi.org/10.1103/PhysRevLett.109.139904. [Erratum: Phys. Rev. Lett.109,139904(2012)]
- 40.A. Majumder, C. Shen, Phys. Rev. Lett. 109, 202301 (2012). https://doi.org/10.1103/PhysRevLett.109.202301 ADSCrossRefGoogle Scholar
- 41.Z. Qiu, C. Shen, U. Heinz, Phys. Lett. B707, 151 (2012). https://doi.org/10.1016/j.physletb.2011.12.041 ADSCrossRefGoogle Scholar
- 42.C. Shen, U. Heinz, P. Huovinen, H. Song, Phys. Rev. C84, 044903 (2011). https://doi.org/10.1103/PhysRevC.84.044903 ADSGoogle Scholar
- 43.C. Shen, U. Heinz, Phys. Rev. C85, 054902 (2012). https://doi.org/10.1103/PhysRevC.86.049903, https://doi.org/10.1103/PhysRevC.85.054902. [Erratum: Phys. Rev.C86,049903(2012)]
- 44.C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, U. Heinz, Comput. Phys. Commun. 199, 61 (2016). https://doi.org/10.1016/j.cpc.2015.08.039 ADSMathSciNetCrossRefGoogle Scholar
- 45.A. Peshier (2006). arXiv:hep-ph/0601119Google Scholar
- 46.Y. Hidaka, R.D. Pisarski, Phys. Rev. D78, 071501 (2008). https://doi.org/10.1103/PhysRevD.78.071501 ADSGoogle Scholar
- 47.Y. Hidaka, R.D. Pisarski, Phys. Rev. D81, 076002 (2010). https://doi.org/10.1103/PhysRevD.81.076002 ADSGoogle Scholar
- 48.A. Dumitru, Y. Guo, Y. Hidaka, C.P.K. Altes, R.D. Pisarski, Phys. Rev. D83, 034022 (2011). https://doi.org/10.1103/PhysRevD.83.034022 ADSGoogle Scholar
- 49.S. Lin, R.D. Pisarski, V.V. Skokov, Phys. Lett. B730, 236 (2014). https://doi.org/10.1016/j.physletb.2014.01.043 ADSCrossRefGoogle Scholar
- 50.A. Bazavov et al., Phys. Rev. D80, 014504 (2009). https://doi.org/10.1103/PhysRevD.80.014504 ADSGoogle Scholar
- 51.S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, C. Ratti, K.K. Szabo, J. High Energy Phys. 09, 073 (2010). https://doi.org/10.1007/JHEP09(2010)073 ADSCrossRefGoogle Scholar
- 52.L.D. McLerran, Phys. Rev. D36, 3291 (1987). https://doi.org/10.1103/PhysRevD.36.3291 ADSGoogle Scholar
- 53.S.A. Gottlieb, W. Liu, D. Toussaint, R.L. Renken, R.L. Sugar, Phys. Rev. D38, 2888 (1988). https://doi.org/10.1103/PhysRevD.38.2888 ADSGoogle Scholar
- 54.R.V. Gavai, J. Potvin, S. Sanielevici, Phys. Rev. D40, 2743 (1989). https://doi.org/10.1103/PhysRevD.40.2743 ADSGoogle Scholar
- 55.S.A. Gottlieb, W. Liu, D. Toussaint, R.L. Renken, R.L. Sugar, Phys. Rev. Lett. 59, 2247 (1987). https://doi.org/10.1103/PhysRevLett.59.2247 ADSCrossRefGoogle Scholar
- 56.J. Noronha-Hostler, B. Betz, J. Noronha, M. Gyulassy, Phys. Rev. Lett. 116(25), 252301 (2016). https://doi.org/10.1103/PhysRevLett.116.252301 ADSCrossRefGoogle Scholar
- 57.B. Betz, M. Gyulassy, M. Luzum, J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti, Phys. Rev. C95(4), 044901 (2017). https://doi.org/10.1103/PhysRevC.95.044901 ADSGoogle Scholar
- 58.M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57, 205 (2007). https://doi.org/10.1146/annurev.nucl.57.090506.123020 ADSCrossRefGoogle Scholar
- 59.J.S. Moreland, J.E. Bernhard, S.A. Bass, Phys. Rev. C92(1), 011901 (2015). https://doi.org/10.1103/PhysRevC.92.011901 ADSGoogle Scholar
- 60.J. Adam et al., Phys. Rev. Lett. 116(13), 132302 (2016). https://doi.org/10.1103/PhysRevLett.116.132302 ADSCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019