Advertisement

Jet Energy-Loss Simulations

  • Shuzhe Shi
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Medium modification observables for high transverse momentum hadrons serve as the hard probe of the evolution history of the QCD matter produced in such collisions, as well as its constituent. CUJET/CIBJET framework is a sophisticated simulation tool that allows the quantitative soft-hard event engineering study. In this chapter we introduce the details of CUJET/CIBJET framework, in particular how elastic and inelastic energy loss is simulated, via collisions with chromo-electric and magnetic components.

Keywords

Jet energy loss CUJET CIBJET 

References

  1. 1.
    J. Liao, E. Shuryak, Phys. Rev. Lett. 102, 202302 (2009).  https://doi.org/10.1103/PhysRevLett.102.202302 ADSCrossRefGoogle Scholar
  2. 2.
    X. Zhang, J. Liao, Phys. Rev. C87, 044910 (2013).  https://doi.org/10.1103/PhysRevC.87.044910 ADSGoogle Scholar
  3. 3.
    X. Zhang, J. Liao, Phys. Rev. C89(1), 014907 (2014).  https://doi.org/10.1103/PhysRevC.89.014907 ADSGoogle Scholar
  4. 4.
    S.K. Das, F. Scardina, S. Plumari, V. Greco, Phys. Lett. B747, 260 (2015). https://doi.org/10.1016/j.physletb.2015.06.003 ADSCrossRefGoogle Scholar
  5. 5.
    W.A. Horowitz, M. Gyulassy, Nucl. Phys. A872, 265 (2011). https://doi.org/10.1016/j.nuclphysa.2011.09.018 ADSCrossRefGoogle Scholar
  6. 6.
    B. Betz, M. Gyulassy, Phys. Rev. C86, 024903 (2012).  https://doi.org/10.1103/PhysRevC.86.024903 ADSGoogle Scholar
  7. 7.
    K.M. Burke et al., Phys. Rev. C90(1), 014909 (2014).  https://doi.org/10.1103/PhysRevC.90.014909 ADSGoogle Scholar
  8. 8.
    A. Buzzatti, M. Gyulassy, Phys. Rev. Lett. 108, 022301 (2012).  https://doi.org/10.1103/PhysRevLett.108.022301 ADSCrossRefGoogle Scholar
  9. 9.
    J. Xu, A. Buzzatti, M. Gyulassy, J. High Energy Phys. 08, 063 (2014).  https://doi.org/10.1007/JHEP08(2014)063 ADSCrossRefGoogle Scholar
  10. 10.
    M. Cacciari, P. Nason, R. Vogt, Phys. Rev. Lett. 95, 122001 (2005).  https://doi.org/10.1103/PhysRevLett.95.122001 ADSCrossRefGoogle Scholar
  11. 11.
    B.A. Kniehl, G. Kramer, B. Potter, Nucl. Phys. B582, 514 (2000). https://doi.org/10.1016/S0550-3213(00)00303-5 ADSCrossRefGoogle Scholar
  12. 12.
    C. Peterson, D. Schlatter, I. Schmitt, P.M. Zerwas, Phys. Rev. D27, 105 (1983).  https://doi.org/10.1103/PhysRevD.27.105 ADSGoogle Scholar
  13. 13.
    J. Xu, J. Liao, M. Gyulassy, Chin. Phys. Lett. 32(9), 092501 (2015). https://doi.org/10.1088/0256-307X/32/9/092501 ADSCrossRefGoogle Scholar
  14. 14.
    J. Xu, J. Liao, M. Gyulassy, J. High Energy Phys. 02, 169 (2016).  https://doi.org/10.1007/JHEP02(2016)169; A.M. Polyakov, JETP Lett. 20, 194 (1974). [,300(1974)]; B.G. Zakharov, JETP Lett. 88, 781 (2008). https://doi.org/10.1134/S0021364008240016
  15. 15.
    JET Collaboration, DOE-DUKE-5396-1 (2015). https://doi.org/10.2172/1242882; B.G. Zakharov, JETP Lett. 101(9), 587 (2015). https://doi.org/10.1134/S0021364015090131. [Pisma Zh. Eksp. Teor. Fiz.101,no.9,659(2015)]
  16. 16.
    N. Armesto et al., Phys. Rev. C86, 064904 (2012).  https://doi.org/10.1103/PhysRevC.86.064904 ADSGoogle Scholar
  17. 17.
    Y.T. Chien, A. Emerman, Z.B. Kang, G. Ovanesyan, I. Vitev, Phys. Rev. D93(7), 074030 (2016).  https://doi.org/10.1103/PhysRevD.93.074030 ADSGoogle Scholar
  18. 18.
    E. Bianchi, J. Elledge, A. Kumar, A. Majumder, G.Y. Qin, C. Shen (2017). arXiv:1702.00481Google Scholar
  19. 19.
    S. Cao, T. Luo, G.Y. Qin, X.N. Wang, Phys. Lett. B777, 255 (2018). https://doi.org/10.1016/j.physletb.2017.12.023 ADSCrossRefGoogle Scholar
  20. 20.
    M.H. Thoma, M. Gyulassy, Nucl. Phys. B351, 491 (1991). https://doi.org/10.1016/S0550-3213(05)80031-8 ADSCrossRefGoogle Scholar
  21. 21.
    J.D. Bjorken, FERMILAB-PUB-82-059-THY (1982)Google Scholar
  22. 22.
    S. Peigne, A. Peshier, Phys. Rev. D77, 114017 (2008).  https://doi.org/10.1103/PhysRevD.77.114017 ADSGoogle Scholar
  23. 23.
    M. Gyulassy, X.n. Wang, Nucl. Phys. B420, 583 (1994). https://doi.org/10.1016/0550-3213(94)90079-5 ADSCrossRefGoogle Scholar
  24. 24.
    M. Gyulassy, P. Levai, I. Vitev, Nucl. Phys. B594, 371 (2001). https://doi.org/10.1016/S0550-3213(00)00652-0 ADSCrossRefGoogle Scholar
  25. 25.
    M. Djordjevic, M. Gyulassy, Nucl. Phys. A733, 265 (2004). https://doi.org/10.1016/j.nuclphysa.2003.12.020 ADSCrossRefGoogle Scholar
  26. 26.
    M. Djordjevic, U.W. Heinz, Phys. Rev. Lett. 101, 022302 (2008).  https://doi.org/10.1103/PhysRevLett.101.022302 ADSCrossRefGoogle Scholar
  27. 27.
    J. Liao, E. Shuryak, Phys. Rev. C75, 054907 (2007).  https://doi.org/10.1103/PhysRevC.75.054907 ADSGoogle Scholar
  28. 28.
    J. Liao, E. Shuryak, Phys. Rev. C77, 064905 (2008).  https://doi.org/10.1103/PhysRevC.77.064905 ADSGoogle Scholar
  29. 29.
    J. Liao, E. Shuryak, Phys. Rev. D82, 094007 (2010).  https://doi.org/10.1103/PhysRevD.82.094007 ADSGoogle Scholar
  30. 30.
    J. Liao, E. Shuryak, Phys. Rev. Lett. 101, 162302 (2008).  https://doi.org/10.1103/PhysRevLett.101.162302 ADSCrossRefGoogle Scholar
  31. 31.
    J. Liao, E. Shuryak, Phys. Rev. Lett. 109, 152001 (2012).  https://doi.org/10.1103/PhysRevLett.109.152001 ADSCrossRefGoogle Scholar
  32. 32.
  33. 33.
    L. Randall, R. Rattazzi, E.V. Shuryak, Phys. Rev. D59, 035005 (1999).  https://doi.org/10.1103/PhysRevD.59.035005 ADSGoogle Scholar
  34. 34.
    H. Liu, K. Rajagopal, U.A. Wiedemann, J. High Energy Phys. 03, 066 (2007). https://doi.org/10.1088/1126-6708/2007/03/066 ADSCrossRefGoogle Scholar
  35. 35.
    R. Baier, A.H. Mueller, D. Schiff, Phys. Lett. B649, 147 (2007). https://doi.org/10.1016/j.physletb.2007.03.048 ADSCrossRefGoogle Scholar
  36. 36.
    H. Song, U.W. Heinz, Phys. Rev. C78, 024902 (2008).  https://doi.org/10.1103/PhysRevC.78.024902 ADSGoogle Scholar
  37. 37.
    C. Shen, U. Heinz, P. Huovinen, H. Song, Phys. Rev. C82, 054904 (2010).  https://doi.org/10.1103/PhysRevC.82.054904 ADSGoogle Scholar
  38. 38.
    T. Renk, H. Holopainen, U. Heinz, C. Shen, Phys. Rev. C83, 014910 (2011).  https://doi.org/10.1103/PhysRevC.83.014910 ADSGoogle Scholar
  39. 39.
    H. Song, S.A. Bass, U. Heinz, T. Hirano, C. Shen, Phys. Rev. Lett. 106, 192301 (2011).  https://doi.org/10.1103/PhysRevLett.106.192301,  https://doi.org/10.1103/PhysRevLett.109.139904. [Erratum: Phys. Rev. Lett.109,139904(2012)]
  40. 40.
    A. Majumder, C. Shen, Phys. Rev. Lett. 109, 202301 (2012).  https://doi.org/10.1103/PhysRevLett.109.202301 ADSCrossRefGoogle Scholar
  41. 41.
    Z. Qiu, C. Shen, U. Heinz, Phys. Lett. B707, 151 (2012). https://doi.org/10.1016/j.physletb.2011.12.041 ADSCrossRefGoogle Scholar
  42. 42.
    C. Shen, U. Heinz, P. Huovinen, H. Song, Phys. Rev. C84, 044903 (2011).  https://doi.org/10.1103/PhysRevC.84.044903 ADSGoogle Scholar
  43. 43.
    C. Shen, U. Heinz, Phys. Rev. C85, 054902 (2012).  https://doi.org/10.1103/PhysRevC.86.049903,  https://doi.org/10.1103/PhysRevC.85.054902. [Erratum: Phys. Rev.C86,049903(2012)]
  44. 44.
    C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, U. Heinz, Comput. Phys. Commun. 199, 61 (2016). https://doi.org/10.1016/j.cpc.2015.08.039 ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    A. Peshier (2006). arXiv:hep-ph/0601119Google Scholar
  46. 46.
    Y. Hidaka, R.D. Pisarski, Phys. Rev. D78, 071501 (2008).  https://doi.org/10.1103/PhysRevD.78.071501 ADSGoogle Scholar
  47. 47.
    Y. Hidaka, R.D. Pisarski, Phys. Rev. D81, 076002 (2010).  https://doi.org/10.1103/PhysRevD.81.076002 ADSGoogle Scholar
  48. 48.
    A. Dumitru, Y. Guo, Y. Hidaka, C.P.K. Altes, R.D. Pisarski, Phys. Rev. D83, 034022 (2011).  https://doi.org/10.1103/PhysRevD.83.034022 ADSGoogle Scholar
  49. 49.
    S. Lin, R.D. Pisarski, V.V. Skokov, Phys. Lett. B730, 236 (2014). https://doi.org/10.1016/j.physletb.2014.01.043 ADSCrossRefGoogle Scholar
  50. 50.
    A. Bazavov et al., Phys. Rev. D80, 014504 (2009).  https://doi.org/10.1103/PhysRevD.80.014504 ADSGoogle Scholar
  51. 51.
    S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, C. Ratti, K.K. Szabo, J. High Energy Phys. 09, 073 (2010).  https://doi.org/10.1007/JHEP09(2010)073 ADSCrossRefGoogle Scholar
  52. 52.
    L.D. McLerran, Phys. Rev. D36, 3291 (1987).  https://doi.org/10.1103/PhysRevD.36.3291 ADSGoogle Scholar
  53. 53.
    S.A. Gottlieb, W. Liu, D. Toussaint, R.L. Renken, R.L. Sugar, Phys. Rev. D38, 2888 (1988).  https://doi.org/10.1103/PhysRevD.38.2888 ADSGoogle Scholar
  54. 54.
    R.V. Gavai, J. Potvin, S. Sanielevici, Phys. Rev. D40, 2743 (1989).  https://doi.org/10.1103/PhysRevD.40.2743 ADSGoogle Scholar
  55. 55.
    S.A. Gottlieb, W. Liu, D. Toussaint, R.L. Renken, R.L. Sugar, Phys. Rev. Lett. 59, 2247 (1987).  https://doi.org/10.1103/PhysRevLett.59.2247 ADSCrossRefGoogle Scholar
  56. 56.
    J. Noronha-Hostler, B. Betz, J. Noronha, M. Gyulassy, Phys. Rev. Lett. 116(25), 252301 (2016).  https://doi.org/10.1103/PhysRevLett.116.252301 ADSCrossRefGoogle Scholar
  57. 57.
    B. Betz, M. Gyulassy, M. Luzum, J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti, Phys. Rev. C95(4), 044901 (2017).  https://doi.org/10.1103/PhysRevC.95.044901 ADSGoogle Scholar
  58. 58.
    M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57, 205 (2007).  https://doi.org/10.1146/annurev.nucl.57.090506.123020 ADSCrossRefGoogle Scholar
  59. 59.
    J.S. Moreland, J.E. Bernhard, S.A. Bass, Phys. Rev. C92(1), 011901 (2015).  https://doi.org/10.1103/PhysRevC.92.011901 ADSGoogle Scholar
  60. 60.
    J. Adam et al., Phys. Rev. Lett. 116(13), 132302 (2016).  https://doi.org/10.1103/PhysRevLett.116.132302 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shuzhe Shi
    • 1
  1. 1.Physics DepartmentMcGill UniversityMontréalCanada

Personalised recommendations