Skip to main content

A Real-Time Big Data Control-Theoretical Framework for Cyber-Physical-Human Systems

  • Chapter
  • First Online:
Computational Intelligence and Optimization Methods for Control Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 150))

Abstract

Cyber-physical-human systems naturally arise from interdependent infrastructure systems and smart connected communities. Such applications require ubiquitous information sensing and processing, intelligent machine-to-machine communication for a seamless coordination, as well as intelligent interactions between humans and machines. This chapter presents a control-theoretical framework to model heterogeneous physical dynamic systems, information and communication, as well as cooperative controls and/or distributed optimization of such interconnected systems. It is shown that efficient analytical and computational algorithms can be modularly designed and hierarchically implemented to operate and optimize cyber-physical-human systems, first to quantify individually the input–output relationship of nonlinear dynamic behaviors of every physical subsystem, then to coordinate locally both cyber-physical interactions of neighboring agents as well as physical-human interactions, and finally to dynamically model and optimize the overall networked system. The hierarchical structure makes the overall optimization and control problem scalable and solvable. Moreover, the three levels integrate individual designs and optimization, distributed cooperative optimization, and decision-making through real-time, data-driven, model-based learning and control. Specifically, one of the contributions of the chapter is to demonstrate how the combination of dissipativity theory and cooperative control serves as a natural framework and promising tools to analyze, optimize, and control such large-scale system. Application to digital power grid is investigated as an illustrative example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An, J., Kumar, P., Xie, L.: On transfer function modeling of price responsive demand: an empirical study. In: IEEE Power and Energy Society General Meeting, pp. 1–5 (2015)

    Google Scholar 

  2. Antsaklis, P.J., Goodwine, B., Gupta, V., McCourt, M.J., Wang, Y., Wu, P., Xia, M., Yu, H., Zhu, F.: Control of cyberphysical systems using passivity and dissipativity based methods. Eur. J. Control. 19(5), 379–388 (2013)

    Article  Google Scholar 

  3. Atman, M.W.S., Hatanaka, T., Qu, Z., Chopra, N., Yamauchi, J., Fujita, M.: Motion synchronization for semi-autonomous robotic swarm with a passivity-short human operator. Int. J. Intell. Robot. Appl. 2(2), 235–251 (2018)

    Article  Google Scholar 

  4. Baheti, R., Gill, H.: Cyber-physical systems. Impact Control Technol. 12(1), 161–166 (2011)

    Google Scholar 

  5. Cassandras, C.G.: Smart cities as cyber-physical social systems. Engineering 2(2), 156–158 (2016)

    Article  Google Scholar 

  6. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153(1), 235–256 (2007)

    Article  MathSciNet  Google Scholar 

  7. DOE: Advancement of synchrophasor technology in ARRA projects. https://www.smartgrid.gov/recovery_act/program_publications.html

  8. Göl, M., Abur, A.: A fast decoupled state estimator for systems measured by PMUs. IEEE Trans. Power Syst. 30(5), 2766–2771 (2015)

    Article  Google Scholar 

  9. Gusrialdi, A.: Performance-oriented communication topology design for distributed control of interconnected systems. Math. Control Signals Syst. 25(4), 559–585 (2013)

    Article  MathSciNet  Google Scholar 

  10. Gusrialdi, A., Chakrabortty, A., Qu, Z.: Distributed learning of mode shapes in power system models. In: IEEE Conference on Decision and Control, pp. 4002–4007 (2018)

    Google Scholar 

  11. Gusrialdi, A., Qu, Z.: Growing connected networks under privacy constraint: achieving trade-off between performance and security. In: IEEE Conference on Decision and Control, pp. 312–317 (2015)

    Google Scholar 

  12. Gusrialdi, A., Qu, Z.: Distributed estimation of all the eigenvalues and eigenvectors of matrices associated with strongly connected digraphs. IEEE Control Syst. Lett. 1(2), 328–333 (2017)

    Article  Google Scholar 

  13. Gusrialdi, A., Qu, Z.: Smart grid security: attacks and defenses. In: Stoustrup, J., Annaswamy, A., Chakrabortty, A., Qu, Z. (eds.) Smart Grid Control: An Overview and Research Opportunities, pp. 199–223. Springer (2018)

    Google Scholar 

  14. Gusrialdi, A., Qu, Z.: Towards resilient operation of smart grid. In: Stoustrup, J., Annaswamy, A., Chakrabortty, A., Qu, Z. (eds.) Smart Grid Control: An Overview and Research Opportunities, pp. 275–288. Springer (2018)

    Google Scholar 

  15. Gusrialdi, A., Qu, Z., Hirche, S.: Distributed link removal using local estimation of network topology. IEEE Trans. Netw. Sci. Eng. (2018)

    Google Scholar 

  16. Gusrialdi, A., Qu, Z., Simaan, M.A.: Distributed scheduling and cooperative control for charging of electric vehicles at highway service stations. IEEE Trans. Intell. Transp. Syst. 18(10), 2713–2727 (2017)

    Article  Google Scholar 

  17. Gusrialdi, A., Qu, Z., Simaan, M.A.: Competitive interaction design of cooperative systems against attacks. IEEE Trans. Autom. Control 63(9), 3159–3166 (2018)

    Article  MathSciNet  Google Scholar 

  18. Gusrialdi, A., Yu, C.: Exploiting the use of information to improve coverage performance of robotic sensor networks. IET Control Theory Appl. 8(13), 1270–1283 (2014)

    Article  Google Scholar 

  19. Haghi, H.V., Qu, Z.: A Kernel-based predictive model of EV capacity for distributed voltage control and demand response. IEEE Trans. Smart Grid 9(4), 3180–3190 (2018)

    Article  Google Scholar 

  20. Hammerstrom, D.J., Ambrosio, R., Carlon, T.A., DeSteese, J.G., Horst, G.R., Kajfasz, R., Kiesling, L.L., Michie, P., Pratt, R.G., Yao, M., et al.: Pacific northwest gridwise? Testbed demonstration projects; Part I. Olympic Peninsula Project. Technical report, Pacific Northwest National Lab. (PNNL), Richland, WA (United States) (2008)

    Google Scholar 

  21. Harvey, R., Qu, Z.: Cooperative control and networked operation of passivity-short systems. In: Control of Complex Systems, pp. 499–518. Elsevier (2016)

    Google Scholar 

  22. Harvey, R., Xu, Y., Qu, Z., Namerikawa, T.: Dissipativity-based design of local and wide-area DER controls for large-scale power systems with high penetration of renewables. In: IEEE Conference on Control Technology and Applications, pp. 2180–2187 (2017)

    Google Scholar 

  23. Hill, D., Moylan, P.: The stability of nonlinear dissipative systems. IEEE Trans. Autom. Control 21(5), 708–711 (1976)

    Article  MathSciNet  Google Scholar 

  24. Hirche, S., Buss, M.: Human-oriented control for haptic teleoperation. Proc. IEEE 100(3), 623–647 (2012)

    Article  Google Scholar 

  25. Hu, J., You, S., Lind, M., Ostergaard, J.: Coordinated charging of electric vehicles for congestion prevention in the distribution grid. IEEE Trans. Smart Grid 5(2), 703–711 (2014)

    Article  Google Scholar 

  26. Ipakchi, A.: Demand side and distributed resource management—a transactive solution. In: IEEE Power and Energy Society General Meeting, pp. 1–8 (2011)

    Google Scholar 

  27. Joo, Y., Harvey, R., Qu, Z.: Cooperative control of heterogeneous multi-agent systems in a sampled-data setting. In: IEEE Conference on Decision and Control, pp. 2683–2688 (2016)

    Google Scholar 

  28. Karnouskos, S., Terzidis, O., Karnouskos, P.: An advanced metering infrastructure for future energy networks. In: New Technologies, Mobility and Security, pp. 597–606. Springer (2007)

    Google Scholar 

  29. Khurana, H., Hadley, M., Lu, N., Frincke, D.A.: Smart-grid security issues. IEEE Secur. Priv. 8(1) (2010)

    Article  Google Scholar 

  30. Klump, R., Agarwal, P., Tate, J.E., Khurana, H.: Lossless compression of synchronized phasor measurements. In: IEEE Power and Energy Society General Meeting, pp. 1–7 (2010)

    Google Scholar 

  31. Lavastorm: Big data, analytics, and energy consumption. http://www.lavastorm.com/blog/2012/04/09/big-data-analytics-and-energy-consumption/

  32. Lian, J., Zhang, W., Sun, Y., Marinovici, L.D., Kalsi, K., Widergren, S.E.: Transactive system: Part I: Theoretical underpinnings of payoff functions, control decisions, information privacy, and solution concepts. Technical report, Pacific Northwest National Lab. (PNNL), Richland, WA (United States) (2018)

    Google Scholar 

  33. Maknouninejad, A., Qu, Z.: Realizing unified microgrid voltage profile and loss minimization: a cooperative distributed optimization and control approach. IEEE Trans. Smart Grid 5(4), 1621–1630 (2014)

    Article  Google Scholar 

  34. McDaniel, P., McLaughlin, S.: Security and privacy challenges in the smart grid. IEEE Secur. Priv. 3, 75–77 (2009)

    Article  Google Scholar 

  35. McRuer, D.: Human dynamics in man-machine systems. Automatica 16(3), 237–253 (1980)

    Article  Google Scholar 

  36. Mishra, D.P., Samantaray, S.R., Joos, G.: A combined wavelet and data-mining based intelligent protection scheme for microgrid. IEEE Trans. Smart Grid 7(5), 2295–2304 (2016)

    Article  Google Scholar 

  37. Moradzadeh, B., Tomsovic, K.: Two-stage residential energy management considering network operational constraints. IEEE Trans. Smart Grid 4(4), 2339–2346 (2013)

    Article  Google Scholar 

  38. Muto, K., Namerikawa, T., Qu, Z.: Passivity-short-based stability analysis on electricity market trading system considering negative price. In: IEEE Conference on Control Technology and Applications, pp. 418–423 (2018)

    Google Scholar 

  39. Okawa, Y., Namerikawa, T., Qu, Z.: Passivity-based stability analysis of dynamic electricity pricing with power flow. In: IEEE Conference on Decision and Control, pp. 813–818 (2017)

    Google Scholar 

  40. Pentland, A.: Economics: simple market models fail the test. Nature 525(7568), 190 (2015)

    Article  Google Scholar 

  41. Peppanen, J., Reno, M.J., Broderick, R.J., Grijalva, S.: Distribution system model calibration with big data from AMI and PV inverters. IEEE Trans. Smart Grid 7(5), 2497–2506 (2016)

    Article  Google Scholar 

  42. Qu, Z.: Cooperative Control of Dynamical Systems. Springer, London (2009)

    MATH  Google Scholar 

  43. Qu, Z., Simaan, M.: An analytic solution to the optimal design of information structure and cooperative control in networked systems. In: IEEE Conference on Decision and Control, pp. 4015–4022 (2012)

    Google Scholar 

  44. Qu, Z., Simaan, M.A.: Modularized design for cooperative control and plug-and-play operation of networked heterogeneous systems. Automatica 50(9), 2405–2414 (2014)

    Article  MathSciNet  Google Scholar 

  45. Sepulchre, R., Jankovic, M., Kokotovic, P.: Constructive Nonlinear Control. Springer, London (1997)

    Book  Google Scholar 

  46. Sijie, C., Chen-Ching, L.: From demand response to transactive energy: state of the art. J. Mod. Power Syst. Clean Energy 5(1), 10–19 (2017)

    Article  Google Scholar 

  47. Soliman, H.M., Leon-Garcia, A.: Game-theoretic demand-side management with storage devices for the future smart grid. IEEE Trans. Smart Grid 5(3), 1475–1485 (2014)

    Article  Google Scholar 

  48. Tu, C., He, X., Shuai, Z., Jiang, F.: Big data issues in smart grid—a review. Renew. Sustain. Energy Rev. 79, 1099–1107 (2017)

    Article  Google Scholar 

  49. Tushar, W., Saad, W., Poor, H.V., Smith, D.B.: Economics of electric vehicle charging: a game theoretic approach. IEEE Trans. Smart Grid 3(4), 1767–1778 (2012)

    Article  Google Scholar 

  50. Tushar, W., Zhang, J.A., Smith, D.B., Poor, H.V., Thiébaux, S.: Prioritizing consumers in smart grid: a game theoretic approach. IEEE Trans. Smart Grid 5(3), 1429–1438 (2014)

    Article  Google Scholar 

  51. VanAntwerp, J.G., Braatz, R.D.: A tutorial on linear and bilinear matrix inequalities. J. Process Control 10(4), 363–385 (2000)

    Article  Google Scholar 

  52. Weckx, S., D’hulst, R., Driesen, J.: Primary and secondary frequency support by a multi-agent demand control system. IEEE Trans. Power Syst. 30(3), 1394–1404 (2015)

    Article  Google Scholar 

  53. Widergren, S.E., Subbarao, K., Fuller, J.C., Chassin, D.P., Somani, A., Marinovici, M.C., Hammerstrom, J.L.: AEP Ohio gridSMART demonstration project real-time pricing demonstration analysis. PNNL Rep. 23192 (2014)

    Google Scholar 

  54. Xin, H., Qu, Z., Seuss, J., Maknouninejad, A.: A self-organizing strategy for power flow control of photovoltaic generators in a distribution network. IEEE Trans. Power Syst. 26(3), 1462–1473 (2011)

    Article  Google Scholar 

  55. Zhao, J., Zhang, G., Das, K., Korres, G.N., Manousakis, N.M., Sinha, A.K., He, Z.: Power system real-time monitoring by using PMU-based robust state estimation method. IEEE Trans. Smart Grid 7(1), 300–309 (2016)

    Article  Google Scholar 

  56. Zhou, K., Fu, C., Yang, S.: Big data driven smart energy management: from big data to big insights. Renew. Sustain. Energy Rev. 56, 215–225 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by U.S. Department of Transportation (award DTRT13GUTC51), by U.S. National Science Foundation (grant ECCS-1308928), by US Department of Energy (awards DE-EE0006340, DE-EE0007327, and DE-EE0007998), by L-3 Communication Coleman Aerospace (contract 11013I2034), by Texas Instruments’ awards, and by Leidos (contract P010161530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azwirman Gusrialdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gusrialdi, A., Xu, Y., Qu, Z., Simaan, M.A. (2019). A Real-Time Big Data Control-Theoretical Framework for Cyber-Physical-Human Systems. In: Blondin, M., Pardalos, P., Sanchis Sáez, J. (eds) Computational Intelligence and Optimization Methods for Control Engineering. Springer Optimization and Its Applications, vol 150. Springer, Cham. https://doi.org/10.1007/978-3-030-25446-9_7

Download citation

Publish with us

Policies and ethics