Advertisement

Feedback Control Algorithms for the Dissipation of Traffic Waves with Autonomous Vehicles

  • Maria Laura Delle Monache
  • Thibault Liard
  • Anaïs Rat
  • Raphael Stern
  • Rahul Bhadani
  • Benjamin Seibold
  • Jonathan Sprinkle
  • Daniel B. Work
  • Benedetto PiccoliEmail author
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 150)

Abstract

This article considers the problem of traffic control in which an autonomous vehicle is used to regulate human-piloted traffic to dissipate stop-and-go traffic waves. We first investigated the controllability of well-known microscopic traffic flow models, namely, (i) the Bando model (also known as the optimal velocity model), (ii) the follow-the-leader model, and (iii) a combined optimal velocity follow-the-leader model. Based on the controllability results, we proposed three control strategies for an autonomous vehicle to stabilize the other, human-piloted traffics. We subsequently simulate the control effects on the microscopic models of human drivers in numerical experiments to quantify the potential benefits of the controllers. Based on the simulations, finally, we conduct a field experiment with 22 human drivers and a fully autonomous-capable vehicle, to assess the feasibility of autonomous vehicle-based traffic control on real human-piloted traffic. We show that both in simulation and in the field test that an autonomous vehicle is able to dampen waves generated by 22 cars, and that as a consequence, the total fuel consumption of all vehicles is reduced by up to 20%.

Notes

Acknowledgements

This research was supported by the Inria associated team "ModEling autonoMous vEhicles iN Traffic flOw " (MEMENTO). This material is based upon work supported by the National Science Foundation under Grant No. CNS-1446715 (Piccoli), CNS-1446690 (Seibold), CNS-1446435 (Sprinkle), and CNS-1446702 (Work). The authors thank Hannah Pohlmann for her help in designing and tuning of the Follow-the-Leader-Bando microscopic model.

References

  1. 1.
    Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51(2), 35–1042 (1995)CrossRefGoogle Scholar
  2. 2.
    Bellomo, N., Dogbe, C.: On the modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM Rev. 53(3), 409–463 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Besselink, B., Johansson, K.H.: String stability and a delay-based spacing policy for vehicle platoons subject to disturbances. IEEE Trans. Automat. Control (2017)Google Scholar
  4. 4.
    Bressan, A., Piccoli, B.: Introduction to the mathematical theory of control. In: AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), vol. 1. Springfield, MO (2007)Google Scholar
  5. 5.
    Buehler, M., Iagnemma, K., Singh, S.: The DARPA Urban Challenge: Autonomous Vehicles in City Traffic, vol. 56. Springer (2009)Google Scholar
  6. 6.
    Chalons, C., Delle Monache, M.L., Goatin, P.: A conservative scheme for non-classical solutions to a strongly coupled pde-ode problem. Interfaces Free Boundaries 19(4), 553–571 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chong, L., Abbas, M., Medina, A.: Simulation of driver behavior with agent-based back-propagation neural network. Transp. Res. Record J. Transp. Res. Board 2249, 44–51 (2011)CrossRefGoogle Scholar
  8. 8.
    Coron, J.-M.: Control and Nonlinearity. Number 136. American Mathematical Society (2007)Google Scholar
  9. 9.
    Darbha, S., Rajagopal, K.: Intelligent cruise control systems and traffic flow stability. Transp. Res. Part C Emerg. Technol. 7(6), 329–352 (1999)CrossRefGoogle Scholar
  10. 10.
    Davis, L.: Effect of adaptive cruise control systems on traffic flow. Phys. Rev. E 69(6), 066110 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Delle Monache, M.L., Goatin, P.: Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result. J. Different. Equations 257(11), 4015–4029 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fenton, R.E., Mayhan, R.J.: Automated highway studies at the Ohio State University-an overview. IEEE Trans. Vehicular Technol. 40(1), 100–113 (1991)CrossRefGoogle Scholar
  13. 13.
    Garavello, M., Han, K., Piccoli, B.: Models for Vehicular Traffic on Networks. American Institute of Mathematical Sciences (2016)Google Scholar
  14. 14.
    Ge, G.I., Avedisov, S.S., He, C.R., Qin, W.B., Sadeghpour, M., Orosz, G.: Experimental validation of connected automated vehicle design among human-driven vehicles. Transp. Res. Part C Emerg. Technol. 91, 335–352 (2018)CrossRefGoogle Scholar
  15. 15.
    Gomes, G., Horowitz, R.: Optimal freeway ramp metering using the asymmetric cell transmission model. Transp. Res. Part C Emerg. Technol. 14(4), 244–262 (2006)CrossRefGoogle Scholar
  16. 16.
    Guériau, M., Billot, R., El Faouzi, N.-E., Monteil, J., Armetta, F., Hassas, S.: How to assess the benefits of connected vehicles? A simulation framework for the design of cooperative traffic management strategies. Transp. Res. Part C Emerg. Technol. 67, 266–279 (2016)CrossRefGoogle Scholar
  17. 17.
    Han, Y., Hegyi, A., Yuan, Y., Hoogendoorn, S., Papageorgiou, M., Roncoli, C.: Resolving freeway jam waves by discrete first-order model-based predictive control of variable speed limits. Transp. Res. Part C Emerg. Technol. 77, 405–420 (2017)CrossRefGoogle Scholar
  18. 18.
    Hegyi, A., De Schutter, B., Hellendoorn, H.: Model predictive control for optimal coordination of ramp metering and variable speed limits. Transp. Res. Part C Emerg. Technol. 13(3), 185–209 (2005)CrossRefGoogle Scholar
  19. 19.
    Hegyi, A., De Schutter, B., Hellendoorn, J.: Optimal coordination of variable speed limits to suppress shock waves. IEEE Trans. Intell. Transp. Syst. 6(1), 102–112 (2005)CrossRefGoogle Scholar
  20. 20.
    Hegyi, A., Hoogendoorn, S.P., Schreuder, M., Stoelhorst, H., Viti, F.: SPECIALIST: a dynamic speed limit control algorithm based on shock wave theory. In: Proceedings of the IEEE Conference on Intelligent Transportation Systems, pp. 827–832. IEEE (2008)Google Scholar
  21. 21.
    Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Modern Phys. 73, 1067–1141 (2001)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hongfei, J., Zhicai, J., Anning, N.: Develop a car-following model using data collected by “five-wheel system”. In: Proceedings of the IEEE Conference on Intelligent Transportation Systems, vol. 1, pp. 346–351. IEEE (2003)Google Scholar
  23. 23.
    Ioannou, P., Xu, Z., Eckert, S., Clemons, D., Sieja, T.: Intelligent cruise control: theory and experiment. In: Proceedings of the 32nd IEEE Conference on Decision and Control, pp. 1885–1890. IEEE (1993)Google Scholar
  24. 24.
    Jurdjevic, V., Quinn, J.P.: Controllability and stability. J. Different. Equations 28(3), 381–389 (1978)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Khodayari, A., Ghaffari, A., Kazemi, R., Braunstingl, R.: A modified car-following model based on a neural network model of the human driver effects. IEEE Trans. Syst. Man Cybernet. Part A Syst. Humans 42(6), 1440–1449 (2012)CrossRefGoogle Scholar
  26. 26.
    Knorr, F., Baselt, D., Schreckenberg, M., Mauve, M.: Reducing traffic jams via VANETs. IEEE Trans. Vehicular Technol. 61(8), 3490–3498 (2012)CrossRefGoogle Scholar
  27. 27.
    Konishi, K., Kokame, H., Hirata, K.: Decentralized delayed-feedback control of an optimal velocity traffic model. Eur. Phys. J. B Condensed Matter Complex Syst. 15(4), 715–722 (2000)CrossRefGoogle Scholar
  28. 28.
    Lattanzio, C., Maurizi, A., Piccoli, B.: Moving bottlenecks in car traffic flow: a PDE-ODE coupled model. SIAM J. Math. Anal. 43, 50–67 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Levine, W., Athans, M.: On the optimal error regulation of a string of moving vehicles. IEEE Trans. Automat. Control 11(3), 355–361 (1966)CrossRefGoogle Scholar
  30. 30.
    Lu, X.Y., Qiu, T.Z., Varaiya, P., Horowitz, R., Shladover, S.E.: Combining variable speed limits with ramp metering for freeway traffic control. In: Proceedings of the American Control Conference, pp. 2266–2271 (2010)Google Scholar
  31. 31.
    Lu, X.-Y., Shladover, S.E., Jawad, I., Jagannathan, R., Phillips, T.: Novel algorithm for variable speed limits and advisories for a freeway corridor with multiple bottlenecks. Transp. Res. Record J. Transp. Res. Board 2489, 86–96 (2015)CrossRefGoogle Scholar
  32. 32.
    Ma, J., Li, X., Shladover, S.E., Rakha, H.A., Lu, X.-Y., Jagannathan, R., Dailey, D.J.: Freeway speed harmonization. IEEE Trans. Intell. Vehicles 1(1), 78–89 (2016)CrossRefGoogle Scholar
  33. 33.
    Milanés, V., Shladover, S.E., Spring, J., Nowakowski, C., Kawazoe, H., Nakamura, M.: Cooperative adaptive cruise control in real traffic situations. IEEE Trans. Intell. Transp. Syst. 15(1), 296–305 (2014)CrossRefGoogle Scholar
  34. 34.
    Nakayama, A., Sugiyama, Y., Hasebe, K.: Effect of looking at the car that follows in an optimal velocity model of traffic flow. Phys. Rev. E 65(1), 016112 (2001)CrossRefGoogle Scholar
  35. 35.
    Nissan, A., Koutsopoulos, H.N.: Evaluation of the impact of advisory variable speed limits on motorway capacity and level of service. Procedia Soc. Behavior. Sci. 16, 100–109 (2011)CrossRefGoogle Scholar
  36. 36.
    Orosz, G., Wilson, R.E., Stépán, G.: Traffic Jams: Dynamics and Control (2010)Google Scholar
  37. 37.
    Papageorgiou, M., Hadj-Salem, H., Blosseville, J.-M.: ALINEA: a local feedback control law for on-ramp metering. Transp. Res. Record J. Transp. Res. Board 1320, 58–67 (1991)Google Scholar
  38. 38.
    Papageorgiou, M., Kotsialos, A.: Freeway ramp metering: an overview. IEEE Trans. Intell. Transp. Syst. 3(4), 271–281 (2002)CrossRefGoogle Scholar
  39. 39.
    Papamichail, I., Kampitaki, K., Papageorgiou, M., Messmer, A.: Integrated ramp metering and variable speed limit control of motorway traffic flow. IFAC Proceedings Volumes 41(2), 14084–14089 (2008)CrossRefGoogle Scholar
  40. 40.
    Piacentini, G., Goatin, P., Ferrara, A.: Traffic control via moving bottleneck of coordinated vehicles. In: 15th IFAC Symposium on Control in Transportation Systems (2018)CrossRefGoogle Scholar
  41. 41.
    Piccoli, B., Tosin, A.: Vehicular Traffic: A Review of Continuum Mathematical Models, pp. 1748–1770. Springer, New York (2011)CrossRefGoogle Scholar
  42. 42.
    Pipes, L.A.: An operational analysis of traffic dynamics. J. Appl. Phys. 24(3), 274–281 (1953)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Popov, A., Hegyi, A., Babuška, R., Werner, H.: Distributed controller design approach to dynamic speed limit control against shockwaves on freeways. Transp. Res. Record J. Transp. Res. Board 2086, 93–99 (2008)CrossRefGoogle Scholar
  44. 44.
    Rajamani, R., Choi, S.B., Hedrick, J.K., Law, B., Hedrick, B., Prohaska, R., Kretz, P.: Design and experimental implementation of control for a platoon of automated vehicles. AMSE J. Dynam. Syst. Meas. Control 122(3), 470–476 (1998)Google Scholar
  45. 45.
    Rakha, H., Ahn, K., Trani, A.: Comparison of mobile5a, mobile6, vt-micro, and cmem models for estimating hot-stabilized light-duty gasoline vehicle emissions. Canadian J. Civil Eng. 30(6), 1010–1021 (2003)CrossRefGoogle Scholar
  46. 46.
    Rakha, H., Ahn, K., Trani, A.: Development of VT-Micro model for estimating hot stabilized light duty vehicle and truck emissions. Transp. Res. Part D Transp. Environ. 9(1), 49–74 (2004)CrossRefGoogle Scholar
  47. 47.
    Reuschel, A.: Vehicle movements in a platoon. Oesterreichisches Ingenieur-Archir 4, 193–215 (1950)zbMATHGoogle Scholar
  48. 48.
    Reuschel, A.: Vehicle movements in a platoon with uniform acceleration or deceleration of the lead vehicle. Zeitschrift des Oesterreichischen Ingenieur-und Architekten-Vereines 95, 50–62 (1950)Google Scholar
  49. 49.
    SAE. Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems. Technical Report (2014)Google Scholar
  50. 50.
    Shladover, S.E.: Review of the state of development of advanced vehicle control systems (AVCS). Vehicle Syst. Dynam. 24(6–7), 551–595 (1995)CrossRefGoogle Scholar
  51. 51.
    Smulders, S.: Control of freeway traffic flow by variable speed signs. Transp. Res. Part B Methodologic. 24(2), 111–132 (1990)CrossRefGoogle Scholar
  52. 52.
    Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe, K., Nakayama, A., Nishinari, K., Tadaki, S., Yukawa, S.: Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam. New J. Phys. 10(3), 033001 (2008)CrossRefGoogle Scholar
  53. 53.
    Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe, K., Nakayama, A., Nishinari, K., Tadaki, S.-I., Yukawa, S.: Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam. New J. Phys. 10(3), 033001 (2008)CrossRefGoogle Scholar
  54. 54.
    Swaroop, D., Hedrick, J.: String stability of interconnected systems. IEEE Trans. Automat. Control 41(3), 349–357 (1996)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Tadaki, S., Kikuchi, M., Fukui, M., Nakayama, A., Nishinari, K., Shibata, A., Sugiyama, Y., Yosida, T., Yukawa, S.: Phase transition in traffic jam experiment on a circuit. New J. Phys. 15, 103034 (2013)CrossRefGoogle Scholar
  56. 56.
    Tadaki, S.-I., Kikuchi, M., Fukui, M., Nakayama, A., Nishinari, K., Shibata, A., Sugiyama, Y., Yosida, T., Yukawa, S.: Phase transition in traffic jam experiment on a circuit. New J. Phys. 15(10), 103034 (2013)CrossRefGoogle Scholar
  57. 57.
    Talebpour, A., Mahmassani, H.S.: Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transp. Res. Part C Emerg. Technol. 71, 143–163 (2016)CrossRefGoogle Scholar
  58. 58.
    Wang, M., Daamen, W., Hoogendoorn, S.P., van Arem, B.: Cooperative car-following control: distributed algorithm and impact on moving jam features. IEEE Trans. Intell. Transp. Syst. 17(5), 1459–1471 (2016)CrossRefGoogle Scholar
  59. 59.
    Wu, F., Stern, R., Cui, S., Monache, M.L.D., Bhadanid, R., Bunting, M., Churchill, M., Hamilton, N., Haulcy, R., Piccoli, B., Seibold, B.: Tracking vehicle trajectories and fuel rates in oscillatory traffic. Transp. Res. Part C Emerg. Technol. Under Review (2017)Google Scholar
  60. 60.
    Zhou, M., Qu, X., Li, X.: A recurrent neural network based microscopic car following model to predict traffic oscillation. Transp. Res. Part C Emerg. Technol. 84, 245–264 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maria Laura Delle Monache
    • 1
  • Thibault Liard
    • 1
  • Anaïs Rat
    • 2
  • Raphael Stern
    • 3
  • Rahul Bhadani
    • 4
  • Benjamin Seibold
    • 5
  • Jonathan Sprinkle
    • 4
  • Daniel B. Work
    • 3
  • Benedetto Piccoli
    • 2
    Email author
  1. 1.University of Grenoble Alpes, Inria, CNRS, Grenoble INP, GIPSA-LabGrenobleFrance
  2. 2.Department of MathematicsUniversity of RutgersCamdenUSA
  3. 3.Department of Civil and Environmental EngineeringInstitute for Software Integrated Systems, Vanderbilt UniversityNashvilleUSA
  4. 4.Department of Electrical and Computer EngineeringUniversity of ArizonaTucsonUSA
  5. 5.Department of MathematicsTemple UniversityPhiladelphiaUSA

Personalised recommendations