Advertisement

Wireless Telecommunication Systems

  • Anatoly Belous
  • Vitali Saladukha
Chapter

Abstract

In the general case, as shown in Chap.  1, all up-to-date telecommunication systems consist of only two components: a high-speed data processing device and data transmission channels.

Keywords

Wireless telecommunications systems Wireless communications Communication channels 

References

  1. 1.
    Belous, A., Saladukha, V., & Shvedau, S. (2017). Space microelectronics. Artech House, Inc.Google Scholar
  2. 2.
    Belous, A., Emelyanov, V., & Turtsevich, A. (2012). Fundamentals of microelectronic device circuitry (p. 472). Moscow: Technosphere.Google Scholar
  3. 3.
    Belous, A., Shvedau, S., & Merdanov, M. (2016). Microwave electronics in radar systems and communications. In Technical encyclopedia (2 Vols., p. 1416). Moscow: Technosphere.Google Scholar
  4. 4.
    Belous, A., Efimenko, S., & Turtsevich, A. (2013). Semiconductor power electronics (p. 216 + colour attachment on 12 pages). Moscow: Tekhnosfera.Google Scholar
  5. 5.
    Belous, A., & Yarzhembitsky, V. (2001). Circuitry of digital microcircuits for information processing and transmission systems (p. 116). Minsk: Tekhnoprint UE.Google Scholar
  6. 6.
    Belous, A., Emelyanov, V., & Syakersky, V. (2009). Designing integrated circuits with low power consumption (p. 320). Minsk: Integralpoligraf.Google Scholar
  7. 7.
    Belous, A., Blinkov, O., & Silin, A. (1990). Bipolar IC for automatic control system interface (p. 272). Leningrad: Mashinostroenie.Google Scholar
  8. 8.
    Belous, A., Podubny, O., & Zhurba, V. (1992). K1815 LSI Microprocessor Kit for digital signal processing (p. 256). Moscow: Radio and Communications.Google Scholar
  9. 9.
    Belous, A., Saladukha, V., & Shvedau, S. (2015). Space electronics (Vol. 1, p. 696). Moscow: Tekhnosfera.Google Scholar
  10. 10.
    Belous, A., Saladukha, V., & Shvedau, S. (2015). Space electronics (Vol. 2, p. 488). Moscow: Tekhnosfera.Google Scholar
  11. 11.
    2G, 3G, 4G, and everything in between: An Engadget wireless primer. https://habrahabr.ru/post/112535/
  12. 12.
    Ericsson. (2013). Networked society essentials [pdf]. Stockholm: Ericsson. Website: http://www.ericsson.com/res/docs/2013/networked-society-essentials-booklet.pdf
  13. 13.
    Ericsson. (2013). Ericsson mobility report – On the pulse of the networked society [pdf]. Stockholm: Ericsson. Website: http://www.ericsson.com/res/docs/2013/ericsson-mobilityreport-june-2013.pdf
  14. 14.
    Cisco. (2013). Cisco visual networking index: Global mobile data traffic forecast update, 2012–2017 [pdf]. USA: Cisco. Website: http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
  15. 15.
    Ericsson. (2013). Technology for good – Ericsson sustainability and corporate responsibility report 2012 [pdf]. Website: http://www.ericsson.com/res/thecompany/docs/corporate-responsibility/2012/2012_corporate_responsibility_and_sustainability_report.pdf
  16. 16.
    METIS. (2013). Mobile and wireless communications Enablers for the Twenty-twenty information Society [pdf]. Website: https://www.metis2020.com/wp-content/uploads/2012/10/METiS_factSheet_2013.pdf
  17. 17.
    Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 101–107.Google Scholar
  18. 18.
    Pi, Z., Khan, F., & Zhang, J. (2010). Techniques for millimeter wave mobile communication. US Patent Application Publication No. 61/299304, priority October 29 2010.Google Scholar
  19. 19.
    Vishnevsky, V., Frolov, S., & Shakhnovich, I. (2010). The millimeter range as an industrial reality. 802.15.3c standard and WirelessHD specification. Electronics: NTB, 3, 70–79.Google Scholar
  20. 20.
    Vishnevsky, V., Frolov, S., & Shakhnovich, I. (2011). Radio-relay communication lines in the millimeter-wave range: New speed horizons. Electronics: NTB, 1, 90–97.Google Scholar
  21. 21.
    Recommendation ITU-R M. 1645. (2010). Framework and overall objectives of the future development of IMT-2000 and systems beyond IMT-2000. ITU.Google Scholar
  22. 22.
  23. 23.
    Chih-Lin, I., Rowell, C., Han, S., Xu, Z., Li, G., & Pan, Z. (2014). Toward green and soft: A 5G perspective. IEEE Communications Magazine, 2, 66–72.Google Scholar
  24. 24.
    Wang, T., Li, G., Ding, J., Miao, Q., Li, J., & Wang, Y. (2015). 5G spectrum: Is China ready? IEEE Communications Magazine, 7, 58–65.Google Scholar
  25. 25.
    ICT-317669-METIS/D1.1. (2013). Scenarios, requirements and KPIs for 5G mobile and wireless system. Project METIS.Google Scholar
  26. 26.
    Shakhnovich, I. (2014). Myth about free space attenuation: What G.T. Friis did not write. First Mile, 2, 40–45.Google Scholar
  27. 27.
    Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Xplore Digital Library, 1, 335–349.CrossRefGoogle Scholar
  28. 28.
    Rappaport, T. S. et al. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Transactions on Antennas and Propagation, 61(4), 1830–1839.CrossRefGoogle Scholar
  29. 29.
    Rappaport, T. S. et al. (2014). 73 GHz millimeter-wave indoor and foliage propagation channel measurements and results (Technical Report 2014–003). NYU WIRELESS: Department of Electrical and Computer Engineering, NYU Polytechnic School of Engineering .Google Scholar
  30. 30.
    Ghosh, A. (2013). Can Mmwave Wireless Technology meet the future capacity crunch. In IEEE ICC.Google Scholar
  31. 31.
    Roh, W. (2013). Performances and feasibility of mmWave beamforming prototype for 5G cellular communications. In IEEE ICC.Google Scholar
  32. 32.
    Tikhvinsky, V., & Bochechka, G. (2014). The prospects of the millimeter range for 5G in Russia. The First Mile, 2, 36–39.Google Scholar
  33. 33.
    Cudak, M., Kovarik, T., Thomas, T. A., Ghosh, A., Kishiyama, Y., & Nakamura, T. (2014). Experimental mmWave 5G cellular system. In Globecom 2014 Workshop Mobile Communications in Higher Frequency Bands (pp. 377–381).Google Scholar
  34. 34.
    4G Americas. (2015, August). 5G spectrum recommendations. www.4gamericas.org.
  35. 35.
    5G Candidate Band Study. (2015). Study on the suitability of potential candidate frequency bands above 6GHz for future 5G mobile broadband systems (Final report to Ofcom). www.quotientassociates.com.
  36. 36.
    Martynov, V., Makushin, M., & Sukhoroslova, Y. (2016). Paradigm of paradigms or the internet of things. Electronics: Science, Technology, Business, 10.Google Scholar
  37. 37.
    Makushin, M. Ten main directions of development and problems of IoT for 2017–2018. In Express information on foreign electronic equipment (Vol. 9, No. 6597, pp. 7–11). Moscow: JSC Central Research Institute Electronics.Google Scholar
  38. 38.
    Starkloff, E. (2014). Wireless technologies for IoT - Incentives and development trends. Electronics: NTB, 6, 118–121.Google Scholar
  39. 39.
  40. 40.
    IMT Vision - framework and overall objectives of the future development of IMT for 2020 and Beyond. International Telecommunication Union, September 2015, www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-1!!PDF-E.pdf
  41. 41.
    LTE-M - optimizing LTE for the internet of things. Nokia Networks. https://gsacom.com/paper/nokia-lte-m2m-optimizing-lte-for-the-internet-of-things/
  42. 42.
    Most analog cellular to fade away next week. PC World, February 2008, www.washingtonpost.com/wp-dyn/content/article/2008/02/15/AR2008021500034.html
  43. 43.
    2025 every car connected: Forecasting the growth and opportunity. SBD, February 2012, www.gsma.com/connectedliving/wp-content/uploads/2012/03/gsma2025everycarcon nected.pdf
  44. 44.
    eCall Whitepaper Version 1.5. QUALCOMM, March 2009.Google Scholar
  45. 45.
    RF Power Amplifier and transceiver market tracker. Databeans, Q42015.Google Scholar
  46. 46.
    Pierpoint, M. (2014). Transition to 5G telecommunication systems - creation of communication channels with phased antenna arrays. Electronics: NTB, 6, 114–117.Google Scholar
  47. 47.
    Zihir, S., Curbuz, O. D., Karroy, A., Raman, S., & Rebeiz, G. M. (2015). A 60 GHz 64-element wafer-scale phased-array with full-reticle design. In 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ.Google Scholar
  48. 48.
    Zihir, S., Gurbuz, O. D., Karroy, A., Raman, S., & Rebeiz, G. M. (2015). A 60 GHz single-chip 256-element wafer-scale phased array with EIRP of 45 dBm using sub-reticle stitching. In 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Phoenix, AZ.Google Scholar
  49. 49.
    Chachin, P. (2017).Use of LPWAN radio technologies for the IoT market. Electronics: NTB, 1, 140–144.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anatoly Belous
    • 1
  • Vitali Saladukha
    • 1
  1. 1.IntegralMinskBelarus

Personalised recommendations