Behavioral Operational Research in Portfolio Selection

  • Omid MomenEmail author


Portfolio selection is the science of using operational research methods and techniques to select the best possible mix of assets in order to achieve the highest expected return while bearing the lowest risk. In this chapter we look at how this happens with the frame of Behavioral Operational Research (BOR). First we highlight the importance of BOR in portfolio optimization using cues from decision theory and psychology. Second we discuss the effects of behavior on portfolio optimization. We distinguish these effects as “structural” and “elemental”. Structural effects are caused by behavioral biases that change the structure of portfolio models. Elemental effects are those caused by behavioral biases that may affect variables, and parameters but not the structure of portfolio models. Third, we discuss how BOR can contain the above mentioned effects by discussing each piece of portfolio models individually and as a whole: expected return, risk, behavioral biases. Finally, we briefly review implications of our chapter and summarize our remarks.


  1. Acerbi, C. (2002). Spectral measures of risk: A coherent representation of subjective risk aversion. Journal of Banking & Finance, 26, 1505–1518.CrossRefGoogle Scholar
  2. Alexander, G. J., & Baptista, A. M. (2011). Portfolio selection with mental accounts and delegation. Journal of Banking & Finance, 35, 2637–2656.CrossRefGoogle Scholar
  3. Alexander, G. J., Baptista, A. M., & Yan, S. (2017). Portfolio selection with mental accounts and estimation risk. Journal of Empirical Finance, 41(March), 161–186.CrossRefGoogle Scholar
  4. Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203–228.CrossRefGoogle Scholar
  5. Bailey, W., Kumar, A., & Ng, D. (2011). Behavioral biases of mutual fund investors. Journal of Financial Economics, 102(1), 1–27.CrossRefGoogle Scholar
  6. Baptista, A. M. (2012). Portfolio selection with mental accounts and background risk. Journal of Banking and Finance, 36(4), 968–980.CrossRefGoogle Scholar
  7. Barber, B. M., & Odean, T. (2001). The internet and the investor. The Journal of Economic Perspectives, 15(1), 41–54.CrossRefGoogle Scholar
  8. Berkelaar, A. B., Kouwenberg, R., & Post, T. (2004). Optimal portfolio choice under loss aversion. The Review of Economics and Statistics, 86(4), 937–987.CrossRefGoogle Scholar
  9. Black, F., & Litterman, R. (1991). Asset allocation: Combining investor views with market equilibrium. The Journal of Fixed Income, 1(2), 7–18.CrossRefGoogle Scholar
  10. Brandt, M., & Wang, K. (2003). Time-varying risk aversion and unexpected inflation. Journal of Monetary Economics, 50(7), 1457–1498.CrossRefGoogle Scholar
  11. Brunel, J. L. P. (2011). Goal-based wealth management in practice. The Journal of Wealth Management, 14(3), 17–26.CrossRefGoogle Scholar
  12. Brunnermeier, M., & Nagel, S. (2008). Do wealth fluctuations generate time-varying risk aversion? Micro-evidence on individuals’ asset allocation (digest summary). American Economic Review, 98(3), 713–736.CrossRefGoogle Scholar
  13. Chen, G., & Kim, K. (2007). Trading performance, disposition effect, overconfidence, representativeness bias, and experience of emerging market investors. Journal of Behavioral Decision Making, 20(4), 425–451.CrossRefGoogle Scholar
  14. Cillo, A., & Delquié, P. (2014). Mean-risk analysis with enhanced behavioral content. European Journal of Operational Research, 239(3), 764–775.CrossRefGoogle Scholar
  15. Da Silva, A. (2009). The Black-Litterman model for active portfolio management. Journal of Portfolio Management, 35(2), 61–70.CrossRefGoogle Scholar
  16. Das, S., Markowitz, H., Scheid, J., & Statman, M. (2010). Portfolio optimization with mental accounts. Journal of Financial and Quantitative Analysis, 45(02), 311–334.CrossRefGoogle Scholar
  17. Dowd, K., & Cotter, J. (2007). Exponential Spectral Risk Measures. Available at SSRN
  18. Dowd, K., Cotter, J., & Sorwar, G. (2008). Spectral risk measures: Properties and limitations. Journal of Financial Services Research, 34(1), 61–75.CrossRefGoogle Scholar
  19. Fabozzi, F. J., Huang, D., & Zhou, G. (2010). Robust portfolios: Contributions from operations research and finance. Annals of Operations Research, 176, 191–220.CrossRefGoogle Scholar
  20. Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A., & Focardi, S. M. (2007). Robust Portfolio Optimization and Management. Hoboken, NJ: Wiley.Google Scholar
  21. Fellner, G. (2009). Illusion of control as a source of poor diversification: Experimental evidence. The Journal of Behavioral Finance, 10(1), 55–67.CrossRefGoogle Scholar
  22. Fennema, H., & Wakker, P. (1997). Original and cumulative prospect theory: A discussion of empirical differences. Journal of Behavioral Decision Making, 10(1), 53–64.CrossRefGoogle Scholar
  23. Garbade, K. (1986). Assessing risk and capital adequacy for Treasury securities. In Topics in Money and Securities Markets. New York: Bankers Trust.Google Scholar
  24. Grable, J., Lytton, R., & O’Neill, B. (2006). Risk tolerance, projection bias, vividness, and equity prices. The Journal of Investing, 15(2), 68–75.CrossRefGoogle Scholar
  25. Grootveld, H., & Hallerbach, W. G. (2004). Upgrading value-at-risk from diagnostic metric to decision variable: A wise thing to do? In G. Szegö (Ed.), Risk Measures for the 21st Century (pp. 33–50). New York: Wiley.Google Scholar
  26. Guiso, L., & Paiella, M. (2008). Risk aversion, wealth, and background risk. Journal of the European Economic Association, 6(6), 1109–1150.CrossRefGoogle Scholar
  27. Halek, M., & Eisenhauer, J. (2001). Demography of risk aversion. Journal of Risk and Insurance, 68(1), 1–24.CrossRefGoogle Scholar
  28. Holt, C., & Laury, S. (2002). Risk aversion and incentive effects. American Economic Review, 92(5), 1644–1655.CrossRefGoogle Scholar
  29. Jorion, P. (2007). Value at Risk: The New Benchmark for Managing Financial Risk (3rd ed.). New York: McGraw-Hill.Google Scholar
  30. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: Journal of the Econometric Society, 47(2), 263–291.CrossRefGoogle Scholar
  31. Kalyvas, L., Dritsakis, N., & Gross, C. (1996). Selecting value-at-risk methods according to their hidden characteristics. Operational Research, 4(2), 167–189.CrossRefGoogle Scholar
  32. Leavens, D. H. (1945). Diversification of investments. Trusts and Estates, 80(5), 469–473.Google Scholar
  33. Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.Google Scholar
  34. Momen, O., Esfahanipour, A., & Seifi, A. (2016, January 25–26). Revised mental accounting: A behavioral portfolio selection. In 12th International Conference on Industrial Engineering (ICIE 2016). Tehran, Iran.Google Scholar
  35. Momen, O., Esfahanipour, A., & Seifi, A. (2017a). Prescriptive portfolio selection: A compromise between fast and slow thinking. Qualitative Research in Financial Markets, 9(2), 98–116.CrossRefGoogle Scholar
  36. Momen, O., Esfahanipour, A., & Seifi, A. (2017b). A robust behavioral portfolio selection: With investor attitudes and biases. Operational Research, 1–20.
  37. Momen, O., Esfahanipour, A., & Seifi, A. (2019a). Collective mental accounting: An integrated behavioural portfolio selection model for multiple mental accounts. Quantitative Finance, 19(2), 265–275.CrossRefGoogle Scholar
  38. Momen, O., Esfahanipour, A., & Seifi, A. (2019b). Portfolio selection model with robust estimators considering behavioral biases in a causal network. RAIRO—Operations Research, 53(2), 577–591.Google Scholar
  39. Nevins, D. (2004). Goals-based investing: Integrating traditional and behavioral finance. The Journal of Wealth Management, 6(4), 8–23.CrossRefGoogle Scholar
  40. Nordén, L. (2010). Individual home bias, portfolio churning and performance. The European Journal of Finance, 16(4), 329–351.CrossRefGoogle Scholar
  41. Odean, T. (1998). Volume, volatility, price, and profit when all traders are above average. The Journal of Finance, 53(6), 1887–1934.CrossRefGoogle Scholar
  42. Odean, T. (1999). Do investors trade too much? American Economic Association, 89(5), 1279–1298.Google Scholar
  43. Pan, C. H., & Statman, M. (2012). Questionnaires of risk tolerance, regret, overconfidence, and other investor propensities. Journal of Investment Consulting, 13(1), 54–63.Google Scholar
  44. Pompian, M. M. (2012). Behavioral Finance and Wealth Management: How to Build Optimal Portfolios That Account for Investor Biases (2nd ed.). Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  45. Raiffa, H. (1968). Decision Analysis: Introductory Lectures on Choices Under Uncertainty. New York: Random House.Google Scholar
  46. Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2(3), 21–41.CrossRefGoogle Scholar
  47. Russo, J. E., & Schoemaker, P. J. (1992). Managing overconfidence. Sloan Management Review, 33(2), 7–17.Google Scholar
  48. Sahm, C. R. (2012). How much does risk tolerance change? Quarterly Journal of Finance, 2(4), 1–38.CrossRefGoogle Scholar
  49. Scheines, R., Spirtes, P., & Glymour, C. (1998). The TETRAD project: Constraint based aids to causal model specification. Multivariate Behavioral Research, 33(1), 65–117.CrossRefGoogle Scholar
  50. Shefrin, H. (2010). Behavioral portfolio selection. Encyclopedia of Quantitative Finance.Google Scholar
  51. Shefrin, H., & Statman, M. (2000). Behavioral portfolio theory. Journal of Financial and Quantitative Analysis, 35(02), 127–151.CrossRefGoogle Scholar
  52. Siebenmorgen, N., & Weber, M. (2003). A behavioral model for asset allocation. Financial Markets and Portfolio Management, 17(1), 15–42.CrossRefGoogle Scholar
  53. Sjöberg, L., & Engelberg, E. (2009). Attitudes to economic risk taking, sensation seeking and values of business students specializing in finance. The Journal of Behavioral Finance, 10(1), 33–43.CrossRefGoogle Scholar
  54. Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, Prediction, and Search. Cambridge: MIT Press.Google Scholar
  55. Statman, M. (2004). Behavioral portfolios: Hope for riches and protection from poverty (pp. 67–80, Pension Research Council Working Paper).CrossRefGoogle Scholar
  56. Statman, M., Thorley, S., & Vorkink, K. (2006). Investor overconfidence and trading volume. Review of Financial Studies, 19(4), 1531–1565.CrossRefGoogle Scholar
  57. Thaler, R. (1999). Mental accounting matters. Journal of Behavioral Decision Making, 12(3), 183–206.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2020

Authors and Affiliations

  1. 1.Azad UniversitySanandaj, KurdistanIran

Personalised recommendations