Advertisement

Clinical Updates and Recent Developments in Neuro-Ophthalmology

  • Amrita-Amanda D. Vuppala
  • Neil R. MillerEmail author
Chapter

Abstract

With the growth of basic science studies, clinical research and updated diagnostic and imaging modalities, the subspecialty of neuro-ophthalmology has continued to evolve. Clinical updates include novel treatment approaches, new disease entities and improved understanding of the underlying pathophysiology for many well-known neuro-ophthalmic diagnoses. This chapter will review these updates while focusing on clinical aspects in an effort to provide clinicians with knowledge that can be applied to everyday practice.

Keywords

Neuro-imaging Neuro-ophthalmology OCT OCTA Tocilizumab Ocrelizumab MOG GFAP Vision restoration therapy Giant cell arteritis 

References

  1. 1.
    Oost W, Talma N, Meilof JF, Laman JD. Targeting senescence to delay progression of multiple sclerosis. J Mol Med. 2018;96(11):1153–66.  https://doi.org/10.1007/s00109-018-1686-x.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bove RM, Hauser SL. Diagnosing multiple sclerosis: art and science. Lancet Neurol. 2018;17(2):109–11.  https://doi.org/10.1016/S1474-4422(17)30461-1.CrossRefPubMedGoogle Scholar
  3. 3.
    Zabad RK, Stewart R, Healey KM. Pattern recognition of the multiple sclerosis syndrome. Brain Sci. 2017;7(10):E138.  https://doi.org/10.3390/brainsci7100138.CrossRefPubMedGoogle Scholar
  4. 4.
    McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001;50(1):121–7.PubMedGoogle Scholar
  5. 5.
    Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73.  https://doi.org/10.1016/s1474-4422(17)30470-2.CrossRefPubMedGoogle Scholar
  6. 6.
    Seay M, Galetta S. Glial fibrillary acidic protein antibody: another antibody in the multiple sclerosis diagnostic mix. J Neuroophthalmol. 2018;38(3):281–4.  https://doi.org/10.1097/wno.0000000000000689.CrossRefPubMedGoogle Scholar
  7. 7.
    Bizzoco E, Lolli F, Repice AM, Hakiki B, Falcini M, Barilaro A, et al. Prevalence of neuromyelitis optica spectrum disorder and phenotype distribution. J Neurol. 2009;256(11):1891–8.  https://doi.org/10.1007/s00415-009-5171-x.CrossRefPubMedGoogle Scholar
  8. 8.
    Stellmann JP, Krumbholz M, Friede T, Gahlen A, Borisow N, Fischer K, et al. Immunotherapies in neuromyelitis optica spectrum disorder: efficacy and predictors of response. J Neurol Neurosurg Psychiatry. 2017;88(8):639–47.  https://doi.org/10.1136/jnnp-2017-315603.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet. 2004;364(9451):2106–12.  https://doi.org/10.1016/s0140-6736(04)17551-x.CrossRefPubMedGoogle Scholar
  10. 10.
    Jarius S, Wildemann B, Paul F. Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clin Exp Immunol. 2014;176(2):149–64.  https://doi.org/10.1111/cei.12271.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jung JS, Preston GM, Smith BL, Guggino WB, Agre P. Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J Biol Chem. 1994;269(20):14648–54.PubMedGoogle Scholar
  12. 12.
    Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177–89.  https://doi.org/10.1212/WNL.0000000000001729.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ketelslegers IA, Modderman PW, Vennegoor A, Killestein J, Hamann D, Hintzen RQ. Antibodies against aquaporin-4 in neuromyelitis optica: distinction between recurrent and monophasic patients. Mult Scler. 2011;17(12):1527–30.  https://doi.org/10.1177/1352458511412995.CrossRefPubMedGoogle Scholar
  14. 14.
    Narayan R, Simpson A, Fritsche K, Salama S, Pardo S, Mealy M, et al. MOG antibody disease: a review of MOG antibody seropositive neuromyelitis optica spectrum disorder. Mult Scler Relat Disord. 2018;25:66–72.  https://doi.org/10.1016/j.msard.2018.07.025.CrossRefPubMedGoogle Scholar
  15. 15.
    Brunner C, Lassmann H, Waehneldt TV, Matthieu JM, Linington C. Differential ultrastructural localization of myelin basic protein, myelin/oligodendroglial glycoprotein, and 2',3'-cyclic nucleotide 3'-phosphodiesterase in the CNS of adult rats. J Neurochem. 1989;52(1):296–304.PubMedGoogle Scholar
  16. 16.
    Berger T, Rubner P, Schautzer F, Egg R, Ulmer H, Mayringer I, et al. Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med. 2003;349(2):139–45.  https://doi.org/10.1056/NEJMoa022328.CrossRefPubMedGoogle Scholar
  17. 17.
    Reindl M, Linington C, Brehm U, Egg R, Dilitz E, Deisenhammer F, et al. Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain. 1999;122(11):2047–56.  https://doi.org/10.1093/brain/122.11.2047.CrossRefPubMedGoogle Scholar
  18. 18.
    Kuhle J, Pohl C, Mehling M, Edan G, Freedman MS, Hartung H-P, et al. Lack of association between antimyelin antibodies and progression to multiple sclerosis. N Engl J Med. 2007;356(4):371–8.  https://doi.org/10.1056/NEJMoa063602.CrossRefPubMedGoogle Scholar
  19. 19.
    Mader S, Gredler V, Schanda K, Rostasy K, Dujmovic I, Pfaller K, et al. Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders. J Neuroinflammation. 2011;8(1):184.  https://doi.org/10.1186/1742-2094-8-184.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hamid SM, Whittam D, Saviour M, et al. Seizures and encephalitis in myelin oligodendrocyte glycoprotein igg disease vs aquaporin 4 igg disease. JAMA Neurol. 2018;75(1):65–71.  https://doi.org/10.1001/jamaneurol.2017.3196.CrossRefPubMedGoogle Scholar
  21. 21.
    Jitprapaikulsan J, Chen JJ, Flanagan EP, Tobin WO, Fryer JP, Weinshenker BG, et al. Aquaporin-4 and myelin oligodendrocyte glycoprotein autoantibody status predict outcome of recurrent optic neuritis. Ophthalmology. 2018;125(10):1628–37.  https://doi.org/10.1016/j.ophtha.2018.03.041.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhou Y, Jia X, Yang H, Chen C, Sun X, Peng L, et al. Myelin oligodendrocyte glycoprotein (MOG) antibody-associated demyelination: comparison between onset phenotypes. Eur J Neurol. 2019;26(1):175–83.  https://doi.org/10.1111/ene.13791.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen JJ, Flanagan EP, Jitprapaikulsan J, Lopez-Chiriboga ASS, Fryer JP, Leavitt JA, et al. Myelin oligodendrocyte glycoprotein antibody (MOG-IgG)-positive optic neuritis: clinical characteristics, radiologic clues and outcome. Am J Ophthalmol. 2018;195:8–15.  https://doi.org/10.1016/j.ajo.2018.07.020.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Narayan RN. Atypical anti-MOG syndrome with aseptic meningoencephalitis and pseudotumor cerebri-like presentations. Mult Scler Relat Disord. 2018;27:30–3.  https://doi.org/10.1016/j.msard.2018.10.003.CrossRefPubMedGoogle Scholar
  25. 25.
    Chalmoukou K, Alexopoulos H, Akrivou S, Stathopoulos P, Reindl M, Dalakas MC. Anti-MOG antibodies are frequently associated with steroid-sensitive recurrent optic neuritis. Neurol Neuroimmunol Neuroinflamm. 2015;2(4):e131.  https://doi.org/10.1212/NXI.0000000000000131.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pandit L, Mustafa S, Nakashima I, Takahashi T, Kaneko K. MOG-IgG-associated disease has a stereotypical clinical course, asymptomatic visual impairment and good treatment response. Mult Scler J Exp Transl Clin. 2018;4(3):2055217318787829.  https://doi.org/10.1177/2055217318787829.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chen JJ, Aksamit AJ, McKeon A, Pittock SJ, Weinshenker BG, Leavitt JA, et al. Optic disc edema in glial fibrillary acidic protein autoantibody-positive meningoencephalitis. J Neuroophthalmol. 2018;38(3):276–81.  https://doi.org/10.1097/wno.0000000000000593.CrossRefPubMedGoogle Scholar
  28. 28.
    Liedtke W, Edelmann W, Bieri PL, Chiu FC, Cowan NJ, Kucherlapati R, et al. GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron. 1996;17(4):607–15.PubMedGoogle Scholar
  29. 29.
    Matiello M, Lennon VA, Jacob A, Pittock SJ, Lucchinetti CF, Wingerchuk DM, et al. NMO-IgG predicts the outcome of recurrent optic neuritis. Neurology. 2008;70(23):2197–200.  https://doi.org/10.1212/01.wnl.0000303817.82134.da.CrossRefPubMedGoogle Scholar
  30. 30.
    Benoilid A, Tilikete C, Collongues N, Arndt C, Vighetto A, Vignal C, et al. Relapsing optic neuritis: a multicentre study of 62 patients. Mult Scler. 2014;20(7):848–53.  https://doi.org/10.1177/1352458513510223.CrossRefPubMedGoogle Scholar
  31. 31.
    Peng Y, Liu L, Zheng Y, Qiao Z, Feng K, Wang J. Diagnostic implications of MOG/AQP4 antibodies in recurrent optic neuritis. Exp Ther Med. 2018;16(2):950–8.  https://doi.org/10.3892/etm.2018.6273.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lotan I, Hellmann MA, Benninger F, Stiebel-Kalish H, Steiner I. Recurrent optic neuritis—different patterns in multiple sclerosis, neuromyelitis optica spectrum disorders and MOG-antibody disease. J Neuroimmunol. 2018;324:115–8.  https://doi.org/10.1016/j.jneuroim.2018.09.010.CrossRefPubMedGoogle Scholar
  33. 33.
    Saini M, Khurana D. Chronic relapsing inflammatory optic neuropathy. Ann Indian Acad Neurol. 2010;13(1):61–3.  https://doi.org/10.4103/0972-2327.61280.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Peschl P, Bradl M, Hoftberger R, Berger T, Reindl M. Myelin oligodendrocyte glycoprotein: deciphering a target in inflammatory demyelinating diseases. Front Immunol. 2017;8:529.  https://doi.org/10.3389/fimmu.2017.00529.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Jarius S, Paul F, Aktas O, Asgari N, Dale RC, de Seze J, et al. MOG encephalomyelitis: international recommendations on diagnosis and antibody testing. J Neuroinflammation. 2018;15(1):134.  https://doi.org/10.1186/s12974-018-1144-2.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Soelberg K, Specovius S, Zimmermann HG, Grauslund J, Mehlsen JJ, Olesen C, et al. Optical coherence tomography in acute optic neuritis: a population-based study. Acta Neurol Scand. 2018;138(6):566–73.  https://doi.org/10.1111/ane.13004.CrossRefPubMedGoogle Scholar
  37. 37.
    Peng A, Kinoshita M, Lai W, Tan A, Qiu X, Zhang L, et al. Retinal nerve fiber layer thickness in optic neuritis with MOG antibodies: a systematic review and meta-analysis. J Neuroimmunol. 2018;325:69–73.  https://doi.org/10.1016/j.jneuroim.2018.09.011.CrossRefPubMedGoogle Scholar
  38. 38.
    Pache F, Zimmermann H, Mikolajczak J, Schumacher S, Lacheta A, Oertel FC, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients. J Neuroinflammation. 2016;13(1):282.  https://doi.org/10.1186/s12974-016-0720-6.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Stiebel-Kalish H, Lotan I, Brody J, Chodick G, Bialer O, Marignier R, et al. Retinal nerve fiber layer may be better preserved in MOG-IgG versus AQP4-IgG optic neuritis: a cohort study. PLoS One. 2017;12(1):e0170847.  https://doi.org/10.1371/journal.pone.0170847.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Turcano P, Chen JJ, Bureau BL, Savica R. Early ophthalmologic features of Parkinson’s disease: a review of preceding clinical and diagnostic markers. J Neurol. 2018.  https://doi.org/10.1007/s00415-018-9051-0.PubMedGoogle Scholar
  41. 41.
    Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for parkinson disease. Arch Neurol. 1999;56(1):33–9.  https://doi.org/10.1001/archneur.56.1.33.CrossRefPubMedGoogle Scholar
  42. 42.
    Diederich NJ, Pieri V, Hipp G, Rufra O, Blyth S, Vaillant M. Discriminative power of different nonmotor signs in early Parkinson’s disease. A case-control study. Mov Disord. 2010;25(7):882–7.  https://doi.org/10.1002/mds.22963.CrossRefPubMedGoogle Scholar
  43. 43.
    Buttner T, Kuhn W, Muller T, Patzold T, Heidbrink K, Przuntek H. Distorted color discrimination in ‘de novo’ parkinsonian patients. Neurology. 1995;45(2):386–7.PubMedGoogle Scholar
  44. 44.
    Bertrand JA, Bedetti C, Postuma RB, Monchi O, Genier Marchand D, Jubault T, et al. Color discrimination deficits in Parkinson’s disease are related to cognitive impairment and white-matter alterations. Mov Disord. 2012;27(14):1781–8.  https://doi.org/10.1002/mds.25272.CrossRefPubMedGoogle Scholar
  45. 45.
    Regan BC, Freudenthaler N, Kolle R, Mollon JD, Paulus W. Colour discrimination thresholds in Parkinson’s disease: results obtained with a rapid computer-controlled colour vision test. Vis Res. 1998;38(21):3427–31.PubMedGoogle Scholar
  46. 46.
    Postuma RB, Gagnon JF, Bertrand JA, Genier Marchand D, Montplaisir JY. Parkinson risk in idiopathic REM sleep behavior disorder: preparing for neuroprotective trials. Neurology. 2015;84(11):1104–13.  https://doi.org/10.1212/wnl.0000000000001364.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Marras C, Schule B, Munhoz RP, Rogaeva E, Langston JW, Kasten M, et al. Phenotype in parkinsonian and nonparkinsonian LRRK2 G2019S mutation carriers. Neurology. 2011;77(4):325–33.  https://doi.org/10.1212/WNL.0b013e318227042d.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Buttner T, Kuhn W, Patzold T, Przuntek H. L-Dopa improves colour vision in Parkinson’s disease. J Neural Transm Park Dis Dement Sect. 1994;7(1):13–9.PubMedGoogle Scholar
  49. 49.
    Ming W, Palidis DJ, Spering M, McKeown MJ. Visual contrast sensitivity in early-stage Parkinson’s disease. Invest Ophthalmol Vis Sci. 2016;57(13):5696–704.  https://doi.org/10.1167/iovs.16-20025.CrossRefPubMedGoogle Scholar
  50. 50.
    Hutton JT, Morris JL, Elias JW, Varma R, Poston JN. Spatial contrast sensitivity is reduced in bilateral Parkinson’s disease. Neurology. 1991;41(8):1200–2.PubMedGoogle Scholar
  51. 51.
    Bodis-Wollner I, Marx MS, Mitra S, Bobak P, Mylin L, Yahr M. Visual dysfunction in Parkinson’s disease. Loss in spatiotemporal contrast sensitivity. Brain. 1987;110(Pt 6):1675–98.PubMedGoogle Scholar
  52. 52.
    Bulens C, Meerwaldt JD, Van der Wildt GJ, Van Deursen JB. Effect of levodopa treatment on contrast sensitivity in Parkinson’s disease. Ann Neurol. 1987;22(3):365–9.  https://doi.org/10.1002/ana.410220313.CrossRefPubMedGoogle Scholar
  53. 53.
    Blekher T, Weaver M, Rupp J, Nichols WC, Hui SL, Gray J, et al. Multiple step pattern as a biomarker in Parkinson disease. Parkinsonism Relat Disord. 2009;15(7):506–10.  https://doi.org/10.1016/j.parkreldis.2009.01.002.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Terao Y, Fukuda H, Ugawa Y, Hikosaka O. New perspectives on the pathophysiology of Parkinson’s disease as assessed by saccade performance: a clinical review. Clin Neurophysiol. 2013;124(8):1491–506.  https://doi.org/10.1016/j.clinph.2013.01.021.CrossRefPubMedGoogle Scholar
  55. 55.
    DeJong JD, Jones GM. Akinesia, hypokinesia, and bradykinesia in the oculomotor system of patients with Parkinson’s disease. Exp Neurol. 1971;32(1):58–68.PubMedGoogle Scholar
  56. 56.
    Crawford T, Goodrich S, Henderson L, Kennard C. Predictive responses in Parkinson’s disease: manual keypresses and saccadic eye movements to regular stimulus events. J Neurol Neurosurg Psychiatry. 1989;52(9):1033–42.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Lueck CJ, Tanyeri S, Crawford TJ, Henderson L, Kennard C. Antisaccades and remembered saccades in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1990;53(4):284–8.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Briand KA, Strallow D, Hening W, Poizner H, Sereno AB. Control of voluntary and reflexive saccades in Parkinson’s disease. Exp Brain Res. 1999;129(1):38–48.PubMedGoogle Scholar
  59. 59.
    Zackon DH, Sharpe JA. Smooth pursuit in senescence. Effects of target acceleration and velocity. Acta Otolaryngol. 1987;104(3–4):290–7.PubMedGoogle Scholar
  60. 60.
    White OB, Saint-Cyr JA, Tomlinson RD, Sharpe JA. Ocular motor deficits in Parkinson’s disease. II. Control of the saccadic and smooth pursuit systems. Brain. 1983;106(Pt 3):571–87.PubMedGoogle Scholar
  61. 61.
    Shibasaki H, Tsuji S, Kuroiwa Y. Oculomotor abnormalities in Parkinson’s disease. Arch Neurol. 1979;36(6):360–4.PubMedGoogle Scholar
  62. 62.
    Gibson JM, Pimlott R, Kennard C. Ocular motor and manual tracking in Parkinson’s disease and the effect of treatment. J Neurol Neurosurg Psychiatry. 1987;50(7):853–60.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Bares M, Brazdil M, Kanovsky P, Jurak P, Daniel P, Kukleta M, et al. The effect of apomorphine administration on smooth pursuit ocular movements in early Parkinsonian patients. Parkinsonism Relat Disord. 2003;9(3):139–44.PubMedGoogle Scholar
  64. 64.
    Waterston JA, Barnes GR, Grealy MA, Collins S. Abnormalities of smooth eye and head movement control in Parkinson’s disease. Ann Neurol. 1996;39(6):749–60.  https://doi.org/10.1002/ana.410390611.CrossRefPubMedGoogle Scholar
  65. 65.
    Nowacka B, Lubinski W, Honczarenko K, Potemkowski A, Safranow K. Ophthalmological features of Parkinson disease. Med Sci Monit. 2014;20:2243–9.  https://doi.org/10.12659/msm.890861.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Racette BA, Gokden MS, Tychsen LS, Perlmutter JS. Convergence insufficiency in idiopathic Parkinson’s disease responsive to levodopa. Strabismus. 1999;7(3):169–74.PubMedGoogle Scholar
  67. 67.
    Almer Z, Klein KS, Marsh L, Gerstenhaber M, Repka MX. Ocular motor and sensory function in Parkinson’s disease. Ophthalmology. 2012;119(1):178–82.  https://doi.org/10.1016/j.ophtha.2011.06.040.CrossRefPubMedGoogle Scholar
  68. 68.
    Sun L, Zhang H, Gu Z, Cao M, Li D, Chan P. Stereopsis impairment is associated with decreased color perception and worse motor performance in Parkinson’s disease. Eur J Med Res. 2014;19:29.  https://doi.org/10.1186/2047-783x-19-29.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kwon KY, Kang SH, Kim M, Lee HM, Jang JW, Kim JY, et al. Nonmotor symptoms and cognitive decline in de novo Parkinson’s disease. Can J Neurol Sci. 2014;41(5):597–602.  https://doi.org/10.1017/cjn.2014.3.CrossRefPubMedGoogle Scholar
  70. 70.
    Kaski D, Saifee TA, Buckwell D, Bronstein AM. Ocular tremor in Parkinson’s disease is due to head oscillation. Mov Disord. 2013;28(4):534–7.  https://doi.org/10.1002/mds.25342.CrossRefPubMedGoogle Scholar
  71. 71.
    Pagonabarraga J, Martinez-Horta S, Fernandez de Bobadilla R, Perez J, Ribosa-Nogue R, Marin J, et al. Minor hallucinations occur in drug-naive Parkinson’s disease patients, even from the premotor phase. Mov Disord. 2016;31(1):45–52.  https://doi.org/10.1002/mds.26432.CrossRefPubMedGoogle Scholar
  72. 72.
    Diederich NJ, Goetz CG, Raman R, Pappert EJ, Leurgans S, Piery V. Poor visual discrimination and visual hallucinations in Parkinson’s disease. Clin Neuropharmacol. 1998;21(5):289–95.PubMedGoogle Scholar
  73. 73.
    Hoglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord. 2017;32(6):853–64.  https://doi.org/10.1002/mds.26987.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Respondek G, Levin J, Hoglinger GU. Progressive supranuclear palsy and multiple system atrophy: clinicopathological concepts and therapeutic challenges. Curr Opin Neurol. 2018;31(4):448–54.  https://doi.org/10.1097/wco.0000000000000581.CrossRefPubMedGoogle Scholar
  75. 75.
    Lee AG, Mader T, Gibson C, Brunstetter TJ, Tarver W. Space flight-associated neuro-ocular syndrome (SANS). Eye (Lond). 2018;32(7):1164–7.Google Scholar
  76. 76.
    Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011;118(10):2058–69.  https://doi.org/10.1016/j.ophtha.2011.06.021.CrossRefPubMedGoogle Scholar
  77. 77.
    Mader TH, Gibson CR, Otto CA, Sargsyan AE, Miller NR, Subramanian PS, et al. Persistent asymmetric optic disc swelling after long-duration space flight: implications for pathogenesis. J Neuroophthalmol. 2017;37(2):133–9.  https://doi.org/10.1097/wno.0000000000000467.CrossRefPubMedGoogle Scholar
  78. 78.
    Arbeille P, Fomina G, Roumy J, Alferova I, Tobal N, Herault S. Adaptation of the left heart, cerebral and femoral arteries, and jugular and femoral veins during short- and long-term head-down tilt and spaceflights. Eur J Appl Physiol. 2001;86(2):157–68.  https://doi.org/10.1007/s004210100473.CrossRefPubMedGoogle Scholar
  79. 79.
    Lerner DJ, Chima RS, Patel K, Parmet AJ. Ultrasound guided lumbar puncture and remote guidance for potential in-flight evaluation of VIIP/SANS. Aerosp Med Hum Perform. 2019;90(1):58–62.  https://doi.org/10.3357/amhp.5170.2019.CrossRefPubMedGoogle Scholar
  80. 80.
    Wasinska-Borowiec W, Aghdam KA, Saari JM, Grzybowski A. An updated review on the most common agents causing toxic optic neuropathies. Curr Pharm Des. 2017;23(4):586–95.  https://doi.org/10.2174/1381612823666170124113826.CrossRefPubMedGoogle Scholar
  81. 81.
    Miller NR, Subramanian P, Patel V. Walsh & Hoyt’s clinical neuro-ophthalmology: the essentials. Philadelphia: Lippincott Williams & Wilkins; 2015. p. 325–7.Google Scholar
  82. 82.
    Jefferis JM, Hickman SJ. Treatment and outcomes in nutritional optic neuropathy. Curr Treat Options Neurol. 2019;21(1):5.  https://doi.org/10.1007/s11940-019-0542-9.CrossRefPubMedGoogle Scholar
  83. 83.
    Chiotoroiu SM, Noaghi M, Stefaniu GI, Secureanu FA, Purcarea VL, Zemba M. Tobacco-alcohol optic neuropathy—clinical challenges in diagnosis. J Med Life. 2014;7(4):472–6.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Vieira LM, Silva NF, Dias dos Santos AM, dos Anjos RS, Pinto LA, Vicente AR, et al. Retinal ganglion cell layer analysis by optical coherence tomography in toxic and nutritional optic neuropathy. J Neuroophthalmol. 2015;35(3):242–5.  https://doi.org/10.1097/wno.0000000000000229.CrossRefPubMedGoogle Scholar
  85. 85.
    Wang MY, Sadun AA, Chan JW. Nutritional and toxic optic neuropathies. In: Chan JW, editor. Optic nerve disorders: diagnosis and management. New York: Springer; 2014. p. 177–207.Google Scholar
  86. 86.
    Nurieva O, Hubacek JA, Urban P, Hlusicka J, Diblik P, Kuthan P, et al. Clinical and genetic determinants of chronic visual pathway changes after methanol—induced optic neuropathy: four-year follow-up study. Clin Toxicol (Phila). 2019;57(6):387–97.  https://doi.org/10.1080/15563650.2018.1532083.CrossRefGoogle Scholar
  87. 87.
    Grzybowski A, Kanclerz P. Progressive chronic retinal axonal loss following acute methanol-induced optic neuropathy: four-year prospective cohort study. Am J Ophthalmol. 2018;195:246–7.  https://doi.org/10.1016/j.ajo.2018.08.019.CrossRefPubMedGoogle Scholar
  88. 88.
    Beatty L, Green R, Magee K, Zed P. A systematic review of ethanol and fomepizole use in toxic alcohol ingestions. Emerg Med Int. 2013;2013:638057.  https://doi.org/10.1155/2013/638057.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Abrishami M, Khalifeh M, Shoayb M, Abrishami M. Therapeutic effects of high-dose intravenous prednisolone in methanol-induced toxic optic neuropathy. J Ocul Pharmacol Ther. 2011;27(3):261–3.  https://doi.org/10.1089/jop.2010.0145.CrossRefPubMedGoogle Scholar
  90. 90.
    Kowalski T, Verma J, Greene SL, Curtin J. Methanol toxicity: a case of blindness treated with adjunctive steroids. Med J Aust. 2019;210(1):14–5.e1.  https://doi.org/10.5694/mja2.12040.CrossRefPubMedGoogle Scholar
  91. 91.
    Pakdel F, Sanjari MS, Naderi A, Pirmarzdashti N, Haghighi A, Kashkouli MB. Erythropoietin in treatment of methanol optic neuropathy. J Neuroophthalmol. 2018;38(2):167–71.  https://doi.org/10.1097/wno.0000000000000614.CrossRefPubMedGoogle Scholar
  92. 92.
    Kao R, Landry Y, Chick G, Leung A. Bilateral blindness secondary to optic nerve ischemia from severe amlodipine overdose: a case report. J Med Case Rep. 2017;11(1):211.  https://doi.org/10.1186/s13256-017-1374-4.
  93. 93.
    Scoville BA, De Lott LB, Trobe JD, Mueller BA. Ethambutol optic neuropathy in a hemodialysis patient receiving a guideline-recommended dose. J Neuroophthalmol. 2013;33(4):421–3.  https://doi.org/10.1097/wno.0000000000000075.  https://doi.org/10.5546/aap.2013.455.
  94. 94.
    Lee J-Y, Han J, Seo JG, Park K-A, Oh SY. Diagnostic value of ganglion cell-inner plexiform layer for early detection of ethambutol-induced optic neuropathy. Br J Ophthalmol. 2019;103(3):379–84.PubMedGoogle Scholar
  95. 95.
    Birmingham MC, Rayner CR, Meagher AK, Flavin SM, Batts DH, Schentag JJ. Linezolid for the treatment of multidrug-resistant, gram-positive infections: experience from a compassionate-use program. Clin Infect Dis. 2003;36(2):159–68.  https://doi.org/10.1086/345744.CrossRefPubMedGoogle Scholar
  96. 96.
    Dempsey SP, Sickman A, Slagle WS. Case report: linezolid optic neuropathy and proposed evidenced-based screening recommendation. Optom Vis Sci. 2018;95(5):468–74.  https://doi.org/10.1097/opx.0000000000001216.CrossRefPubMedGoogle Scholar
  97. 97.
    Purvin V, Kawasaki A, Borruat FX. Optic neuropathy in patients using amiodarone. Arch Ophthalmol. 2006;124(5):696–701.  https://doi.org/10.1001/archopht.124.5.696.CrossRefPubMedGoogle Scholar
  98. 98.
    Chen D, Hedges TR. Amiodarone optic neuropathy—review. Semin Ophthalmol. 2003;18(4):169–73.  https://doi.org/10.1080/08820530390895163.CrossRefPubMedGoogle Scholar
  99. 99.
    Johnson LN, Krohel GB, Thomas ER. The clinical spectrum of amiodarone-associated optic neuropathy. J Natl Med Assoc. 2004;96(11):1477–91.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Neufeld A, Warner J. Case of bilateral sequential nonarteritic ischemic optic neuropathy after rechallenge with sildenafil. J Neuroophthalmol. 2018;38(1):123–4.PubMedGoogle Scholar
  101. 101.
    Campbell UB, Walker AM, Gaffney M, Petronis KR, Creanga D, Quinn S, et al. Acute nonarteritic anterior ischemic optic neuropathy and exposure to phosphodiesterase type 5 inhibitors. J Sex Med. 2015;12(1):139–51.PubMedGoogle Scholar
  102. 102.
    Flahavan EM, Li H, Gupte-Singh K, Rizk RT, Ruff DD, Francis JL, et al. Prospective case-crossover study investigating the possible association between nonarteritic anterior ischemic optic neuropathy and phosphodiesterase type 5 inhibitor exposure. Urology. 2017;105:76–84.PubMedGoogle Scholar
  103. 103.
    Margo CE, French DD. Ischemic optic neuropathy in male veterans prescribed phosphodiesterase-5 inhibitors. Am J Ophthalmol. 2007;143(3):538–9.PubMedGoogle Scholar
  104. 104.
    Nathoo NA, Etminan M, Mikelberg FS. Association between phosphodiesterase-5 inhibitors and nonarteritic anterior ischemic optic neuropathy. J Neuroophthalmol. 2015;35(1):12–5.PubMedGoogle Scholar
  105. 105.
    Gaffuri M, Cristofaletti A, Mansoldo C, Biban P. Acute onset of bilateral visual loss during sildenafil therapy in a young infant with congenital heart disease. BMJ Case Rep. 2014;2014:bcr2014204262.  https://doi.org/10.1136/bcr-2014-204262.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Grzybowski A, Zulsdorff M, Wilhelm H, Tonagel F. Toxic optic neuropathies: an updated review. Acta Ophthalmol. 2015;93(5):402–10.  https://doi.org/10.1111/aos.12515.CrossRefPubMedGoogle Scholar
  107. 107.
    Becker DA, Balcer LJ, Galetta SL. The neurological complications of nutritional deficiency following bariatric surgery. J Obes. 2012;2012:608534.  https://doi.org/10.1155/2012/608534.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Golnik KC, Schaible ER. Folate-responsive optic neuropathy. J Neuroophthalmol. 1994;14(3):163–9.PubMedGoogle Scholar
  109. 109.
    Grzybowski A, Holder GE. Tobacco optic neuropathy (TON)—the historical and present concept of the disease. Acta Ophthalmol. 2011;89(5):495–9.  https://doi.org/10.1111/j.1755-3768.2009.01853.x.CrossRefPubMedGoogle Scholar
  110. 110.
    Wostyn P, Van Dam D, De Deyn PP. Intracranial pressure and glaucoma: is there a new therapeutic perspective on the horizon? Med Hypotheses. 2018;118:98–102.  https://doi.org/10.1016/j.mehy.2018.06.026.CrossRefPubMedGoogle Scholar
  111. 111.
    Berdahl JP, Allingham RR. Intracranial pressure and glaucoma. Curr Opin Ophthalmol. 2010;21(2):106–11.PubMedGoogle Scholar
  112. 112.
    Kim YW, Kim DW, Jeoung JW, Kim DM, Park KH. Peripheral lamina cribrosa depth in primary open-angle glaucoma: a swept-source optical coherence tomography study of lamina cribrosa. Eye. 2015;29:1368.  https://doi.org/10.1038/eye.2015.162. https://www.nature.com/articles/eye2015162#supplementary-information.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Downs JC, Roberts MD, Burgoyne CF. The mechanical environment of the optic nerve head in glaucoma. Optom Vis Sci. 2008;85(6):425.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Wostyn P, De Groot V, Van Dam D, Audenaert K, De Deyn PP. Senescent changes in cerebrospinal fluid circulatory physiology and their role in the pathogenesis of normal-tension glaucoma. Am J Ophthalmol. 2013;156(1):5–14.e2.  https://doi.org/10.1016/j.ajo.2013.03.003.CrossRefPubMedGoogle Scholar
  115. 115.
    Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D. Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol. 2003;2(8):506–11.  https://doi.org/10.1016/S1474-4422(03)00487-3.CrossRefPubMedGoogle Scholar
  116. 116.
    Wostyn P, Killer HE, De Deyn PP. Glymphatic stasis at the site of the lamina cribrosa as a potential mechanism underlying open-angle glaucoma. Clin Exp Ophthalmol. 2017;45(5):539–47.  https://doi.org/10.1111/ceo.12915.CrossRefPubMedGoogle Scholar
  117. 117.
    Mathieu E, Gupta N, Ahari A, Zhou X, Hanna J, Yücel YH. Evidence for cerebrospinal fluid entry into the optic nerve via a glymphatic pathway. Invest Ophthalmol Vis Sci. 2017;58(11):4784–91.  https://doi.org/10.1167/iovs.17-22290.CrossRefPubMedGoogle Scholar
  118. 118.
    Wattjes MP, Rovira À, Miller D, Yousry TA, Sormani MP, de Stefano N, et al. MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis—establishing disease prognosis and monitoring patients. Nat Rev Neurol. 2015;11:597.  https://doi.org/10.1038/nrneurol.2015.157.CrossRefPubMedGoogle Scholar
  119. 119.
    Silver NC, Good CD, Sormani MP, MacManus DG, Thompson AJ, Filippi M, et al. A modified protocol to improve the detection of enhancing brain and spinal cord lesions in multiple sclerosis. J Neurol. 2001;248(3):215–24.PubMedGoogle Scholar
  120. 120.
    Thorpe JW, Kidd D, Moseley IF, Kendall BE, Thompson AJ, MacManus DG, et al. Serial gadolinium-enhanced MRI of the brain and spinal cord in early relapsing-remitting multiple sclerosis. Neurology. 1996;46(2):373–8.  https://doi.org/10.1212/wnl.46.2.373.CrossRefPubMedGoogle Scholar
  121. 121.
    Filippi M, Rocca MA, Ciccarelli O, De Stefano N, Evangelou N, Kappos L, et al. MRI criteria for the diagnosis of multiple sclerosis: magnims consensus guidelines. Lancet Neurol. 2016;15(3):292–303.  https://doi.org/10.1016/S1474-4422(15)00393-2.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Sati P, Oh J, Constable RT, Evangelou N, Guttmann CR, Henry RG, et al. The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nat Rev Neurol. 2016;12(12):714–22.  https://doi.org/10.1038/nrneurol.2016.166.CrossRefPubMedGoogle Scholar
  123. 123.
    Maggi P, Absinta M, Grammatico M, Vuolo L, Emmi G, Carlucci G, et al. Central vein sign differentiates Multiple Sclerosis from central nervous system inflammatory vasculopathies. Ann Neurol. 2018;83(2):283–94.  https://doi.org/10.1002/ana.25146.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Campion T, Smith RJP, Altmann DR, Brito GC, Turner BP, Evanson J, et al. FLAIR∗ to visualize veins in white matter lesions: a new tool for the diagnosis of multiple sclerosis? Eur Radiol. 2017;27(10):4257–63.  https://doi.org/10.1007/s00330-017-4822-z.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Dejaco C, Ramiro S, Duftner C, Besson FL, Bley TA, Blockmans D, et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Ann Rheum Dis. 2018;77(5):636–43.  https://doi.org/10.1136/annrheumdis-2017-212649.CrossRefPubMedGoogle Scholar
  126. 126.
    Luqmani R, Lee E, Singh S, Gillett M, Schmidt WA, Bradburn M, et al. The Role of Ultrasound Compared to Biopsy of Temporal Arteries in the Diagnosis and Treatment of Giant Cell Arteritis (TABUL): a diagnostic accuracy and cost-effectiveness study. Health Technol Assess. 2016;20(90):1–238.  https://doi.org/10.3310/hta20900.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Schmidt WA, Kraft HE, Vorpahl K, Völker L, Gromnica-Ihle EJ. Color duplex ultrasonography in the diagnosis of temporal arteritis. N Engl J Med. 1997;337(19):1336–42.  https://doi.org/10.1056/nejm199711063371902.CrossRefPubMedGoogle Scholar
  128. 128.
    Sammel AM, Fraser CL. Update on giant cell arteritis. Curr Opin Ophthalmol. 2018;29(6):520–7.  https://doi.org/10.1097/icu.0000000000000528.CrossRefPubMedGoogle Scholar
  129. 129.
    Chrysidis S, Duftner C, Dejaco C, Schäfer VS, Ramiro S, Carrara G, et al. Definitions and reliability assessment of elementary ultrasound lesions in giant cell arteritis: a study from the OMERACT Large Vessel Vasculitis Ultrasound Working Group. RMD Open. 2018;4(1):e000598.  https://doi.org/10.1136/rmdopen-2017-000598.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Duftner C, Dejaco C, Sepriano A, Falzon L, Schmidt WA, Ramiro S. Imaging in diagnosis, outcome prediction and monitoring of large vessel vasculitis: a systematic literature review and meta-analysis informing the EULAR recommendations. RMD Open. 2018;4(1).  https://doi.org/10.1136/rmdopen-2017-000612.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Halbach C, McClelland CM, Chen J, Li S, Lee MS. Use of noninvasive imaging in giant cell arteritis. Asia Pac J Ophthalmol (Phila). 2018;7(4):260–4.  https://doi.org/10.22608/apo.2018133.CrossRefGoogle Scholar
  132. 132.
    Rheaume M, Rebello R, Pagnoux C, Carette S, Clements-Baker M, Cohen-Hallaleh V, et al. High-resolution magnetic resonance imaging of scalp arteries for the diagnosis of giant cell arteritis: results of a prospective cohort study. Arthritis Rheumatol. 2017;69(1):161–8.  https://doi.org/10.1002/art.39824.CrossRefPubMedGoogle Scholar
  133. 133.
    Germano G, Muratore F, Cimino L, Lo Gullo A, Possemato N, Macchioni P, et al. Is colour duplex sonography-guided temporal artery biopsy useful in the diagnosis of giant cell arteritis? A randomized study. Rheumatology (Oxford). 2015;54(3):400–4.  https://doi.org/10.1093/rheumatology/keu241.CrossRefGoogle Scholar
  134. 134.
    Craven A, Robson J, Ponte C, Grayson PC, Suppiah R, Judge A, et al. ACR/EULAR-endorsed study to develop Diagnostic and Classification Criteria for Vasculitis (DCVAS). Clin Exp Nephrol. 2013;17(5):619–21.  https://doi.org/10.1007/s10157-013-0854-0.CrossRefPubMedGoogle Scholar
  135. 135.
    Vincent A, Huda S, Cao M, Cetin H, Koneczny I, Rodriguez-Cruz P, et al. Serological and experimental studies in different forms of myasthenia gravis. Ann N Y Acad Sci. 2018;1413(1):143–53.  https://doi.org/10.1111/nyas.13592.CrossRefPubMedGoogle Scholar
  136. 136.
    Gilhus NE, Skeie GO, Romi F, Lazaridis K, Zisimopoulou P, Tzartos S. Myasthenia gravis—autoantibody characteristics and their implications for therapy. Nat Rev Neurol. 2016;12(5):259–68.  https://doi.org/10.1038/nrneurol.2016.44.CrossRefPubMedGoogle Scholar
  137. 137.
    Fortin E, Cestari DM, Weinberg DH. Ocular myasthenia gravis: an update on diagnosis and treatment. Curr Opin Ophthalmol. 2018;29(6):477–84.  https://doi.org/10.1097/icu.0000000000000526.CrossRefPubMedGoogle Scholar
  138. 138.
    Provenzano C, Marino M, Scuderi F, Evoli A, Bartoccioni E. Anti-acetylcholinesterase antibodies associate with ocular myasthenia gravis. J Neuroimmunol. 2010;218(1–2):102–6.  https://doi.org/10.1016/j.jneuroim.2009.11.004.CrossRefPubMedGoogle Scholar
  139. 139.
    Binks S, Vincent A, Palace J. Myasthenia gravis: a clinical-immunological update. J Neurol. 2016;263(4):826–34.  https://doi.org/10.1007/s00415-015-7963-5.CrossRefPubMedGoogle Scholar
  140. 140.
    Eng H, Lefvert AK. Isolation of an antiidiotypic antibody with acetylcholine-receptor-like binding properties from myasthenia gravis patients. Ann Inst Pasteur Immunol. 1988;139(5):569–80.PubMedGoogle Scholar
  141. 141.
    Rodgaard A, Nielsen FC, Djurup R, Somnier F, Gammeltoft S. Acetylcholine receptor antibody in myasthenia gravis: predominance of IgG subclasses 1 and 3. Clin Exp Immunol. 1987;67(1):82–8.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Higuchi O, Hamuro J, Motomura M, Yamanashi Y. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol. 2011;69(2):418–22.  https://doi.org/10.1002/ana.22312.CrossRefPubMedGoogle Scholar
  143. 143.
    Zhang B, Tzartos JS, Belimezi M, Ragheb S, Bealmear B, Lewis RA, et al. Autoantibodies to lipoprotein-related protein 4 in patients with double-seronegative myasthenia gravis. Arch Neurol. 2012;69(4):445–51.  https://doi.org/10.1001/archneurol.2011.2393.CrossRefPubMedGoogle Scholar
  144. 144.
    Achilli A, Iommarini L, Olivieri A, Pala M, Hooshiar Kashani B, Reynier P, et al. Rare primary mitochondrial DNA mutations and probable synergistic variants in Leber’s hereditary optic neuropathy. PLoS One. 2012;7(8):e42242.  https://doi.org/10.1371/journal.pone.0042242.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol. 2015;14(10):1023–36.  https://doi.org/10.1016/s1474-4422(15)00145-3.CrossRefPubMedGoogle Scholar
  146. 146.
    Tsivgoulis G, Dervenoulas G, Kokotis P, Zompola C, Tzartos JS, Tzartos SJ, et al. Double seronegative myasthenia gravis with low density lipoprotein-4 (LRP4) antibodies presenting with isolated ocular symptoms. J Neurol Sci. 2014;346(1–2):328–30.  https://doi.org/10.1016/j.jns.2014.09.013.CrossRefPubMedGoogle Scholar
  147. 147.
    Kerty E, Elsais A, Argov Z, Evoli A, Gilhus NE. EFNS/ENS Guidelines for the treatment of ocular myasthenia. Eur J Neurol. 2014;21(5):687–93.  https://doi.org/10.1111/ene.12359.CrossRefPubMedGoogle Scholar
  148. 148.
    Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med. 2001;7(3):365–8.  https://doi.org/10.1038/85520.CrossRefPubMedGoogle Scholar
  149. 149.
    Guptill JT, Sanders DB, Evoli A. Anti-MuSK antibody myasthenia gravis: clinical findings and response to treatment in two large cohorts. Muscle Nerve. 2011;44(1):36–40.  https://doi.org/10.1002/mus.22006.CrossRefPubMedGoogle Scholar
  150. 150.
    Stergiou C, Lazaridis K, Zouvelou V, Tzartos J, Mantegazza R, Antozzi C, et al. Titin antibodies in “seronegative” myasthenia gravis—a new role for an old antigen. J Neuroimmunol. 2016;292:108–15.  https://doi.org/10.1016/j.jneuroim.2016.01.018.CrossRefPubMedGoogle Scholar
  151. 151.
    Evoli A, Alboini PE, Damato V, Iorio R, Provenzano C, Bartoccioni E, et al. Myasthenia gravis with antibodies to MuSK: an update. Anne N Y Acad Sci. 2018;1412(1):82–9.  https://doi.org/10.1111/nyas.13518.CrossRefGoogle Scholar
  152. 152.
    Evoli A, Alboini PE, Iorio R, Damato V, Bartoccioni E. Pattern of ocular involvement in myasthenia gravis with MuSK antibodies. J Neurol Neurosurg Psychiatry. 2017;88(9):761–3.  https://doi.org/10.1136/jnnp-2017-315782.CrossRefPubMedGoogle Scholar
  153. 153.
    Wong SH, Huda S, Vincent A, Plant GT. Ocular myasthenia gravis: controversies and updates. Curr Neurol Neurosci Rep. 2013;14(1):421.  https://doi.org/10.1007/s11910-013-0421-9.CrossRefGoogle Scholar
  154. 154.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science (New York, NY). 1991;254(5035):1178–81.Google Scholar
  155. 155.
    Rao HL, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA. Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology. 2010;117(9):1692–9, 9.e1.  https://doi.org/10.1016/j.ophtha.2010.01.031.CrossRefPubMedGoogle Scholar
  156. 156.
    Savini G, Bellusci C, Carbonelli M, Zanini M, Carelli V, Sadun AA, et al. Detection and quantification of retinal nerve fiber layer thickness in optic disc edema using stratus OCT. Arch Ophthalmol. 2006;124(8):1111–7.  https://doi.org/10.1001/archopht.124.8.1111.CrossRefPubMedGoogle Scholar
  157. 157.
    Lee MJ, Abraham AG, Swenor BK, Sharrett AR, Ramulu PY. Application of optical coherence tomography in the detection and classification of cognitive decline. J Curr Glaucoma Pract. 2018;12(1):10–8.  https://doi.org/10.5005/jp-journals-10028-1238.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Kardon RH. Role of the macular optical coherence tomography scan in neuro-ophthalmology. J Neuroophthalmol. 2011;31(4):353–61.  https://doi.org/10.1097/WNO.0b013e318238b9cb.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Saidha S, Al-Louzi O, Ratchford JN, Bhargava P, Oh J, Newsome SD, et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: a four-year study. Ann Neurol. 2015;78(5):801–13.  https://doi.org/10.1002/ana.24487.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Winges KM, Werner JS, Harvey DJ, Cello KE, Durbin MK, Balcer LJ, et al. Baseline retinal nerve fiber layer thickness and macular volume quantified by OCT in the north american phase 3 fingolimod trial for relapsing–remitting multiple sclerosis. J Neuroophthalmol. 2013;33(4):322–9.  https://doi.org/10.1097/WNO.0b013e31829c51f7.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Werner JS, Keltner JL, Zawadzki RJ, Choi SS. Outer retinal abnormalities associated with inner retinal pathology in nonglaucomatous and glaucomatous optic neuropathies. Eye (Lond). 2011;25(3):279–89.  https://doi.org/10.1038/eye.2010.218.CrossRefGoogle Scholar
  162. 162.
    La Morgia C, Barboni P, Rizzo G, Carbonelli M, Savini G, Scaglione C, et al. Loss of temporal retinal nerve fibers in Parkinson disease: a mitochondrial pattern? Eur J Neurol. 2013;20(1):198–201.  https://doi.org/10.1111/j.1468-1331.2012.03701.x.CrossRefPubMedGoogle Scholar
  163. 163.
    Roth NM, Saidha S, Zimmermann H, Brandt AU, Isensee J, Benkhellouf-Rutkowska A, et al. Photoreceptor layer thinning in idiopathic Parkinson’s disease. Mov Disord. 2014;29(9):1163–70.  https://doi.org/10.1002/mds.25896.CrossRefPubMedGoogle Scholar
  164. 164.
    Archibald NK, Clarke MP, Mosimann UP, Burn DJ. Visual symptoms in Parkinson’s disease and Parkinson’s disease dementia. Mov Disord. 2011;26(13):2387–95.  https://doi.org/10.1002/mds.23891.CrossRefPubMedGoogle Scholar
  165. 165.
    Garcia-Martin E, Satue M, Otin S, Fuertes I, Alarcia R, Larrosa JM, et al. Retina measurements for diagnosis of Parkinson disease. Retina (Phila). 2014;34(5):971–80.  https://doi.org/10.1097/iae.0000000000000028.CrossRefGoogle Scholar
  166. 166.
    Satue M, Obis J, Rodrigo MJ, Otin S, Fuertes MI, Vilades E, et al. Optical coherence tomography as a biomarker for diagnosis, progression, and prognosis of neurodegenerative diseases. J Ophthalmol. 2016;2016:8503859.  https://doi.org/10.1155/2016/8503859.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Garcia-Martin E, Pablo LE, Bambo MP, Alarcia R, Polo V, Larrosa JM, et al. Comparison of peripapillary choroidal thickness between healthy subjects and patients with Parkinson’s disease. PLoS One. 2017;12(5):e0177163.  https://doi.org/10.1371/journal.pone.0177163.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Hagag AM, Gao SS, Jia Y, Huang D. Optical coherence tomography angiography: technical principles and clinical applications in ophthalmology. Taiwan J Ophthalmol. 2017;7(3):115–29.  https://doi.org/10.4103/tjo.tjo_31_17.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Schmetterer L, Garhofer G. How can blood flow be measured? Surv Ophthalmol. 2007;52(Suppl 2):S134–8.  https://doi.org/10.1016/j.survophthal.2007.08.008.CrossRefPubMedGoogle Scholar
  170. 170.
    Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M et al. Optical Coherence Tomography Angiography of Optic Disc Perfusion in Glaucoma. Ophthalmol. 2014;121(7):1322–32. https://doi.org/j.ophtha.2014.01.02.Google Scholar
  171. 171.
    Chen JJ, AbouChehade JE, Iezzi R Jr, Leavitt JA, Kardon RH. Optical coherence angiographic demonstration of retinal changes from chronic optic neuropathies. Neuroophthalmology. 2017;41(2):76–83.  https://doi.org/10.1080/01658107.2016.1275703.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Spain RI, Liu L, Zhang X, Jia Y, Tan O, Bourdette D, et al. Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis. Br J Ophthalmol. 2018;102(4):520–4.  https://doi.org/10.1136/bjophthalmol-2017-310477.CrossRefPubMedGoogle Scholar
  173. 173.
    Wang X, Jia Y, Spain R, Potsaid B, Liu JJ, Baumann B, et al. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol. 2014;98(10):1368–73.  https://doi.org/10.1136/bjophthalmol-2013-304547.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Higashiyama T, Nishida Y, Ohji M. Optical coherence tomography angiography in eyes with good visual acuity recovery after treatment for optic neuritis. PLoS One. 2017;12(2):e0172168.  https://doi.org/10.1371/journal.pone.0172168.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Takayama K, Ito Y, Kaneko H, Kataoka K, Ra E, Terasaki H. Optical coherence tomography angiography in leber hereditary optic neuropathy. Acta Ophthalmol. 2017;95(4):e344–e5.  https://doi.org/10.1111/aos.13244.CrossRefPubMedGoogle Scholar
  176. 176.
    Kousal B, Kolarova H, Meliska M, Bydzovsky J, Diblik P, Kulhanek J, et al. Peripapillary microcirculation in Leber hereditary optic neuropathy. Acta Ophthalmol. 2019;97(1):e71–6.  https://doi.org/10.1111/aos.13817.CrossRefPubMedGoogle Scholar
  177. 177.
    Borrelli E, Balasubramanian S, Triolo G, Barboni P, Sadda SR, Sadun AA. Topographic macular microvascular changes and correlation with visual loss in chronic leber hereditary optic neuropathy. Am J Ophthalmol. 2018;192:217–28.  https://doi.org/10.1016/j.ajo.2018.05.029.CrossRefPubMedGoogle Scholar
  178. 178.
    Hall S, Persellin S, Lie JT, O’Brien PC, Kurland LT, Hunder GG. The therapeutic impact of temporal artery biopsy. Lancet. 1983;2(8361):1217–20.PubMedGoogle Scholar
  179. 179.
    Stone JH, Tuckwell K, Dimonaco S, Klearman M, Aringer M, Blockmans D, et al. Trial of tocilizumab in giant-cell arteritis. N Engl J Med. 2017;377(4):317–28.  https://doi.org/10.1056/NEJMoa1613849.CrossRefPubMedGoogle Scholar
  180. 180.
    Langford CA, Cuthbertson D, Ytterberg SR, Khalidi N, Monach PA, Carette S, et al. A randomized, double-blind trial of abatacept (CTLA-4Ig) for the treatment of giant cell arteritis. Arthritis Rheumatol. 2017;69(4):837–45.  https://doi.org/10.1002/art.40044.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Mulero P, Midaglia L, Montalban X. Ocrelizumab: a new milestone in multiple sclerosis therapy. Ther Adv Neurol Disord. 2018;11:1756286418773025.  https://doi.org/10.1177/1756286418773025.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Falsini B, Chiaretti A, Rizzo D, Piccardi M, Ruggiero A, Manni L, et al. Nerve growth factor improves visual loss in childhood optic gliomas: a randomized, double-blind, phase II clinical trial. Brain. 2016;139(Pt 2):404–14.  https://doi.org/10.1093/brain/awv366.CrossRefPubMedGoogle Scholar
  183. 183.
    Pandit R, Paris L, Rudich DS, Lesser RL, Kupersmith MJ, Miller NR. Long-term efficacy of fractionated conformal radiotherapy for the management of primary optic nerve sheath meningioma. Br J Ophthalmol. 2018.  https://doi.org/10.1136/bjophthalmol-2018-313135.PubMedGoogle Scholar
  184. 184.
    Carelli V, Carbonelli M, de Coo IF, Kawasaki A, Klopstock T, Lagreze WA, et al. International consensus statement on the clinical and therapeutic management of leber hereditary optic neuropathy. J Neuroophthalmol. 2017;37(4):371–81.  https://doi.org/10.1097/WNO.0000000000000570.CrossRefPubMedGoogle Scholar
  185. 185.
    Mashima Y, Hiida Y, Oguchi Y. Remission of Leber’s hereditary optic neuropathy with idebenone. Lancet (London). 1992;340(8815):368–9.Google Scholar
  186. 186.
    Carelli V, La Morgia C, Valentino ML, Rizzo G, Carbonelli M, De Negri AM, et al. Idebenone treatment in Leber’s hereditary optic neuropathy. Brain. 2011;134(Pt 9):e188.  https://doi.org/10.1093/brain/awr180.CrossRefPubMedGoogle Scholar
  187. 187.
    Klopstock T, Yu-Wai-Man P, Dimitriadis K, Rouleau J, Heck S, Bailie M, et al. A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain. 2011;134(Pt 9):2677–86.  https://doi.org/10.1093/brain/awr170.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Manickam AH, Michael MJ, Ramasamy S. Mitochondrial genetics and therapeutic overview of Leber’s hereditary optic neuropathy. Indian J Ophthalmol. 2017;65(11):1087–92.  https://doi.org/10.4103/ijo.IJO_358_17.CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Yu-Wai-Man P. Genetic manipulation for inherited neurodegenerative diseases: myth or reality? Br J Ophthalmol. 2016;100(10):1322–31.  https://doi.org/10.1136/bjophthalmol-2015-308329.CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Manfredi G, Fu J, Ojaimi J, Sadlock JE, Kwong JQ, Guy J, et al. Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus. Nat Genet. 2002;30(4):394–9.  https://doi.org/10.1038/ng851.CrossRefPubMedGoogle Scholar
  191. 191.
    Guy J, Qi X, Pallotti F, Schon EA, Manfredi G, Carelli V, et al. Rescue of a mitochondrial deficiency causing Leber Hereditary Optic Neuropathy. Ann Neurol. 2002;52(5):534–42.  https://doi.org/10.1002/ana.10354.CrossRefPubMedGoogle Scholar
  192. 192.
    Perales-Clemente E, Fernandez-Silva P, Acin-Perez R, Perez-Martos A, Enriquez JA. Allotopic expression of mitochondrial-encoded genes in mammals: achieved goal, undemonstrated mechanism or impossible task? Nucleic Acids Res. 2011;39(1):225–34.  https://doi.org/10.1093/nar/gkq769.CrossRefPubMedGoogle Scholar
  193. 193.
    Feuer WJ, Schiffman JC, Davis JL, Porciatti V, Gonzalez P, Koilkonda RD, et al. Gene therapy for leber hereditary optic neuropathy: initial results. Ophthalmology. 2016;123(3):558–70.  https://doi.org/10.1016/j.ophtha.2015.10.025.CrossRefGoogle Scholar
  194. 194.
    Wan X, Pei H, Zhao MJ, Yang S, Hu WK, He H, et al. Efficacy and safety of rAAV2-ND4 treatment for Leber’s hereditary optic neuropathy. Sci Rep. 2016;6:21587.  https://doi.org/10.1038/srep21587.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Yang S, Ma SQ, Wan X, He H, Pei H, Zhao MJ, et al. Long-term outcomes of gene therapy for the treatment of Leber’s hereditary optic neuropathy. EBioMedicine. 2016;10:258–68.  https://doi.org/10.1016/j.ebiom.2016.07.002.CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Hyslop LA, Blakeley P, Craven L, Richardson J, Fogarty NME, Fragouli E, et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature. 2016;534(7607):383–6.  https://doi.org/10.1038/nature18303.CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Jurkute N, Yu-Wai-Man P. Leber hereditary optic neuropathy: bridging the translational gap. Curr Opin Ophthalmol. 2017;28(5):403–9.  https://doi.org/10.1097/icu.0000000000000410.CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Kang E, Wu J, Gutierrez NM, Koski A, Tippner-Hedges R, Agaronyan K, et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature. 2016;540(7632):270–5.  https://doi.org/10.1038/nature20592.CrossRefPubMedGoogle Scholar
  199. 199.
    Rowe F, Brand D, Jackson CA, Price A, Walker L, Harrison S, et al. Visual impairment following stroke: do stroke patients require vision assessment? Age Ageing. 2009;38(2):188–93.  https://doi.org/10.1093/ageing/afn230.CrossRefPubMedGoogle Scholar
  200. 200.
    Ghannam ASB, Subramanian PS. Neuro-ophthalmic manifestations of cerebrovascular accidents. Curr Opin Ophthalmol. 2017;28(6):564–72.  https://doi.org/10.1097/icu.0000000000000414.CrossRefPubMedGoogle Scholar
  201. 201.
    Zhang X, Kedar S, Lynn MJ, Newman NJ, Biousse V. Natural history of homonymous hemianopia. Neurology. 2006;66(6):901–5.  https://doi.org/10.1212/01.wnl.0000203338.54323.22.CrossRefPubMedGoogle Scholar
  202. 202.
    Mansouri B, Roznik M, Rizzo JF 3rd, Prasad S. Rehabilitation of visual loss: where we are and where we need to be. J Neuroophthalmol. 2018;38(2):223–9.  https://doi.org/10.1097/wno.0000000000000594.CrossRefPubMedGoogle Scholar
  203. 203.
    Mueller I, Mast H, Sabel BA. Recovery of visual field defects: a large clinical observational study using vision restoration therapy. Restor Neurol Neurosci. 2007;25(5–6):563–72.PubMedGoogle Scholar
  204. 204.
    Paggiaro A, Birbaumer N, Cavinato M, Turco C, Formaggio E, Del Felice A, et al. Magnetoencephalography in stroke recovery and rehabilitation. Front Neurol. 2016;7:35.  https://doi.org/10.3389/fneur.2016.00035.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Henriksson L, Raninen A, Nasanen R, Hyvarinen L, Vanni S. Training-induced cortical representation of a hemianopic hemifield. J Neurol Neurosurg Psychiatry. 2007;78(1):74–81.  https://doi.org/10.1136/jnnp.2006.099374.CrossRefPubMedGoogle Scholar
  206. 206.
    Eysel UT. Perilesional cortical dysfunction and reorganization. Adv Neurol. 1997;73:195–206.PubMedGoogle Scholar
  207. 207.
    Sincich LC, Park KF, Wohlgemuth MJ, Horton JC. Bypassing V1: a direct geniculate input to area MT. Nat Neurosci. 2004;7(10):1123–8.  https://doi.org/10.1038/nn1318.CrossRefPubMedGoogle Scholar
  208. 208.
    Darian-Smith C, Gilbert CD. Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature. 1994;368(6473):737–40.  https://doi.org/10.1038/368737a0.CrossRefPubMedGoogle Scholar
  209. 209.
    Davies JM, Hopkins LN. Neuroendovascular intervention: evolving at the intersection of neurosurgery and neuro-ophthalmology. J Neuroophthalmol. 2017;37(2):111–2.  https://doi.org/10.1097/wno.0000000000000517.CrossRefPubMedGoogle Scholar
  210. 210.
    Micieli JA, Newman NJ, Barrow DL, Biousse V. Intracranial aneurysms of neuro-ophthalmologic relevance. J Neuroophthalmol. 2017;37(4):421–39.  https://doi.org/10.1097/wno.0000000000000515.CrossRefPubMedGoogle Scholar
  211. 211.
    La Pira B, Brinjikji W, Hunt C, Chen JJ, Lanzino G. Reversible edema-like changes along the optic tract following pipeline-assisted coiling of a large anterior communicating artery aneurysm. J Neuroophthalmol. 2017;37(2):154–8.  https://doi.org/10.1097/wno.0000000000000412.CrossRefPubMedGoogle Scholar
  212. 212.
    Griessenauer CJ, Piske RL, Baccin CE, Pereira BJ, Reddy AS, Thomas AJ, et al. Flow diverters for treatment of 160 ophthalmic segment aneurysms: evaluation of safety and efficacy in a multicenter cohort. Neurosurgery. 2017;80(5):726–32.PubMedGoogle Scholar
  213. 213.
    Adeeb N, Griessenauer CJ, Foreman PM, Moore JM, Motiei-Langroudi R, Chua MH, et al. Comparison of stent-assisted coil embolization and the pipeline embolization device for endovascular treatment of ophthalmic segment aneurysms: a multicenter cohort study. World Neurosurg. 2017;105:206–12.PubMedGoogle Scholar
  214. 214.
    Zu QQ, Liu XL, Wang B, Zhou CG, Xia JG, Zhao LB et al. Recovery of oculomotor nerve palsy after endovascular treatment of ruptured posterior communicating artery aneurysm. Neuroradiol. 2017;59(11):1165–70.  https://doi.org/10.1007/s00234-017-1909-9.PubMedGoogle Scholar
  215. 215.
    Hall S, Sadek A-R, Dando A, Grose A, Dimitrov BD, Millar J, et al. The resolution of oculomotor nerve palsy caused by unruptured posterior communicating artery aneurysms: a cohort study and narrative review. World Neurosurg. 2017;107:581–7.PubMedGoogle Scholar
  216. 216.
    Liu KC, Starke RM, Durst CR, Wang TR, Ding D, Crowley RW, et al. Venous sinus stenting for reduction of intracranial pressure in IIH: a prospective pilot study. J Neurosurg. 2017;127(5):1126–33.PubMedGoogle Scholar
  217. 217.
    Matloob SA, Toma AK, Thompson SD, Gan CL, Robertson F, Thorne L, et al. Effect of venous stenting on intracranial pressure in idiopathic intracranial hypertension. Acta Neurochir. 2017;159(8):1429–37.PubMedGoogle Scholar
  218. 218.
    Dinkin MJ, Patsalides A. Venous sinus stenting in idiopathic intracranial hypertension: results of a prospective trial. J Neuroophthalmol. 2017;37(2):113–21.  https://doi.org/10.1097/wno.0000000000000426.CrossRefPubMedGoogle Scholar
  219. 219.
    Miyachi S, Hiramatsu R, Ohnishi H, Takahashi K, Kuroiwa T. Endovascular treatment of idiopathic intracranial hypertension with stenting of the transverse sinus stenosis. Neurointervention. 2018;13(2):138–43.  https://doi.org/10.5469/neuroint.2018.00990.CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Nicholson P, Brinjikji W, Radovanovic I, Hilditch CA, Tsang ACO, Krings T, et al. Venous sinus stenting for idiopathic intracranial hypertension: a systematic review and meta-analysis. J Neurointerv Surg. 2019;11(4):380–5.  https://doi.org/10.1136/neurintsurg-2018-014172.CrossRefPubMedGoogle Scholar
  221. 221.
    Leishangthem L, Sir Deshpande P, Dua D, Satti SR. Dural venous sinus stenting for idiopathic intracranial hypertension: an updated review. J Neuroradiol. 2019;46(2):148–54.  https://doi.org/10.1016/j.neurad.2018.09.001.CrossRefPubMedGoogle Scholar
  222. 222.
    Fargen KM, Liu K, Garner RM, Greeneway GP, Wolfe SQ, Crowley RW. Recommendations for the selection and treatment of patients with idiopathic intracranial hypertension for venous sinus stenting. J Neurointerv Surg. 2018.  https://doi.org/10.1136/neurintsurg-2018-014042.PubMedGoogle Scholar
  223. 223.
    Asif H, Craven CL, Siddiqui AH, Shah SN, Matloob SA, Thorne L, et al. Idiopathic intracranial hypertension: 120-day clinical, radiological, and manometric outcomes after stent insertion into the dural venous sinus. J Neurosurg. 2018;129(3):723–31.  https://doi.org/10.3171/2017.4.Jns162871.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Nebraska Medical CenterOmahaUSA
  2. 2.Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations