Advertisement

Recent Developments in Vitreo-Retinal Surgery

  • Sana Idrees
  • Ajay E. Kuriyan
  • Stephen G. Schwartz
  • Jean-Marie Parel
  • Harry W. FlynnJrEmail author
Chapter

Abstract

Vitreo-retinal surgical techniques have transformed since the introduction of pars plana vitrectomy in 1970. Advancements include smaller gauge instrumentation, faster cut rates, improved illumination methods, wider-field viewing systems, and the use of various tamponade agents and perfluorocarbon.

Keywords

Vitreo-retinal surgery Vitrectomy Cannula-trocar Wide-angle viewing Lensectomy Perfluorocarbon Subretinal injection Scleral buckle Tamponade Retinal detachment 

References

  1. 1.
    Dodo T. Diapupillary resection of vitreous opacity. Nippon Ganka Gakkai Zasshi. 1955;59:1737–45.Google Scholar
  2. 2.
    Dodo T, Okuzawa Y, Baba N. [Trans-pupillary resection of vitreous body opacity]. Ganka. 1969;11(1):38–44.Google Scholar
  3. 3.
    Kasner D, Miller GR, Taylor WH, Sever RJ, Norton EW. Surgical treatment of amyloidosis of the vitreous. Trans Am Acad Ophthalmol Otolaryngol. 1968;72(3):410–8.PubMedGoogle Scholar
  4. 4.
    Machemer R, Buettner H, Norton EW, Parel JM. Vitrectomy: a pars plana approach. Trans Am Acad Ophthalmol Otolaryngol. 1971;75(4):813–20.PubMedGoogle Scholar
  5. 5.
    Machemer R. Reminiscences after 25 years of pars plana vitrectomy. Am J Ophthalmol. 1995;119(4):505–10.PubMedGoogle Scholar
  6. 6.
    Machemer R, Parel JM, Buettner H. A new concept for vitreous surgery. I. Instrumentation. Am J Ophthalmol. 1972;73(1):1–7.PubMedGoogle Scholar
  7. 7.
    Parel JM, Machemer R, Aumayr W. A new concept for vitreous surgery. 4. Improvements in instrumentation and illumination. Am J Ophthalmol. 1974;77(1):6–12.PubMedGoogle Scholar
  8. 8.
    Machemer R. A new concept for vitreous surgery. 2. Surgical technique and complications. Am J Ophthalmol. 1972;74(6):1022–33.PubMedGoogle Scholar
  9. 9.
    Peyman GA, Dodich NA. Experimental vitrectomy: instrumentation and surgical technique. Arch Ophthalmol. 1971;86(5):548–51.PubMedGoogle Scholar
  10. 10.
    O’Malley C, Heintz RM. Vitrectomy with an alternative instrument system. Ann Ophthalmol. 1975;7(4):585–8, 591–4.PubMedGoogle Scholar
  11. 11.
    Machemer R, Hickingbotham D. The three-port microcannular system for closed vitrectomy. Am J Ophthalmol. 1985;100(4):590–2.PubMedGoogle Scholar
  12. 12.
    de Juan E, Hickingbotham D. Refinements in microinstrumentation for vitreous surgery. Am J Ophthalmol. 1990;109(2):218–20.PubMedGoogle Scholar
  13. 13.
    Peyman GA. A miniaturized vitrectomy system for vitreous and retinal biopsy. Can J Ophthalmol. 1990;25(6):285–6.PubMedGoogle Scholar
  14. 14.
    Fujii GY, De Juan E, Humayun MS, Pieramici DJ, Chang TS, Awh C, et al. A new 25-gauge instrument system for transconjunctival sutureless vitrectomy surgery. Ophthalmology. 2002;109(10):1807–12; discussion 1813.PubMedGoogle Scholar
  15. 15.
    Fujii GY, De Juan E, Humayun MS, Chang TS, Pieramici DJ, Barnes A, et al. Initial experience using the transconjunctival sutureless vitrectomy system for vitreoretinal surgery. Ophthalmology. 2002;109(10):1814–20.PubMedGoogle Scholar
  16. 16.
    Eckardt C. Transconjunctival sutureless 23-gauge vitrectomy. Retina. 2005;25(2):208–11.PubMedGoogle Scholar
  17. 17.
    Oshima Y, Wakabayashi T, Sato T, Ohji M, Tano Y. A 27-gauge instrument system for transconjunctival sutureless microincision vitrectomy surgery. Ophthalmology. 2010;117(1):93–102.e2.PubMedGoogle Scholar
  18. 18.
    Machemer R, Norton EW. A new concept for vitreous surgery. 3. Indications and results. Am J Ophthalmol. 1972;74(6):1034–56.PubMedGoogle Scholar
  19. 19.
    Wilson D, Barr CC. Outpatient and abbreviated hospitalization for vitreoretinal surgery. Ophthalmic Surg. 1990;21(2):119–22.PubMedGoogle Scholar
  20. 20.
    Newsom RS, Wainwright AC, Canning CR. Local anaesthesia for 1221 vitreoretinal procedures. Br J Ophthalmol. 2001;85(2):225–7.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Huang JJ, Fogel S, Leavell M. Cost analysis in vitrectomy: monitored anesthesia care and general anesthesia. AANA J. 2001;69(2):111–3.PubMedGoogle Scholar
  22. 22.
    Wong DH. Regional anaesthesia for intraocular surgery. Can J Anaesth. 1993;40(7):635–57.PubMedGoogle Scholar
  23. 23.
    Celiker H, Karabas L, Sahin O. A comparison of topical or retrobulbar anesthesia for 23-gauge posterior vitrectomy. J Ophthalmol. 2014;2014:237028.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Trujillo-Sanchez GP, Gonzalez-De La Rosa A, Navarro-Partida J, Haro-Morlett L, Altamirano-Vallejo JC, Santos A. Feasibility and safety of vitrectomy under topical anesthesia in an office-based setting. Indian J Ophthalmol. 2018;66(8):1136–40.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Narendran V, Kothari AR, editors. Vitreoretinal surgery systems. In: Principles and practice of vitreoretinal surgery. 1st ed. Philadelphia: Jaypee Brothers Medical Publishers Ltd; 2014. p. 53–6.Google Scholar
  26. 26.
    Lai TYY. Machines and cutters: Stellaris PC. Dev Ophthalmol. 2014;54:8–16.PubMedGoogle Scholar
  27. 27.
    Charles S, Calzada J, Wood B, editors. 25-Gauge vitrectomy. In: Vitreous microsurgery. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2011. p. 103–11.Google Scholar
  28. 28.
    Mohamed S, Claes C, Tsang CW. Review of small gauge vitrectomy: progress and innovations. J Ophthalmol. 2017;2017:6285869.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Nagpal M, Paranjpe G, Jain P, Videkar R. Advances in small-gauge vitrectomy. Taiwan J Ophthalmol. 2012;2(1):6.Google Scholar
  30. 30.
    Osawa S, Oshima Y. 27-Gauge vitrectomy. Dev Ophthalmol. 2014;54:54–62.PubMedGoogle Scholar
  31. 31.
    Oellers P, Stinnett S, Hahn P. Valved versus nonvalved cannula small-gauge pars plana vitrectomy for repair of retinal detachments with Grade C proliferative vitreoretinopathy. Clin Ophthalmol. 2016;10:1001–6.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Oellers P, Stinnett S, Mruthyunjaya P, Hahn P. Small-gauge valved versus nonvalved cannula pars plana vitrectomy for retinal detachment repair. Retina. 2016;36(4):744–9.PubMedGoogle Scholar
  33. 33.
    Littmann H. [A new surgical microscope]. Klin Monatsblatter Augenheilkd Augenarztliche Fortbild. 1954;124(4):473–6.Google Scholar
  34. 34.
    Parel JM, Machemer R, Aumayr W. A new concept for vitreous surgery. 5. An automated operating microscope. Am J Ophthalmol. 1974;77(2):161–8.PubMedGoogle Scholar
  35. 35.
    Hattenbach L-O, Framme C, Junker B, Pielen A, Agostini H, Maier M. [Intraoperative real-time OCT in macular surgery]. Ophthalmologe. 2016;113(8):656–62.PubMedGoogle Scholar
  36. 36.
    Landers MB, Stefánsson E, Wolbarsht ML. The optics of vitreous surgery. Am J Ophthalmol. 1981;91(5):611–4.PubMedGoogle Scholar
  37. 37.
    Bovey EH, Gonvers M. A new device for noncontact wide-angle viewing of the fundus during vitrectomy. Arch Ophthalmol. 1995;113(12):1572–3.PubMedGoogle Scholar
  38. 38.
    Chalam KV, Shah VA. Optics of wide-angle panoramic viewing system-assisted vitreous surgery. Surv Ophthalmol. 2004;49(4):437–45.PubMedGoogle Scholar
  39. 39.
    Inoue M. Wide-angle viewing system. Dev Ophthalmol. 2014;54:87–91.PubMedGoogle Scholar
  40. 40.
    Chihara T, Kita M. New type of antidrying lens for vitreous surgery with a noncontact wide-angle viewing system. Clin Ophthalmol. 2013;7:353–5.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Ohji M, Tada E, Futamura H. Combining a contact lens and wide-angle viewing system for a wider fundus view. Retina. 2011;31(9):1958–60.PubMedGoogle Scholar
  42. 42.
    Ohno H. Combined use of high-reflective index vitrectomy meniscus contact lens and a noncontact wide-angle viewing system in vitreous surgery. Clin Ophthalmol. 2011;5:1109–11.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Shah VA, Chalam KV. Self-stabilizing wide-angle contact lens for vitreous surgery. Retina. 2003;23(5):667–9.PubMedGoogle Scholar
  44. 44.
    Mateo C, Burés-Jelstrup A. Contact versus noncontact wide-field viewing systems: why not have the best of both worlds? Retina. 2018;38(4):854–6.PubMedGoogle Scholar
  45. 45.
    Adam MK, Thornton S, Regillo CD, Park C, Ho AC, Hsu J. Minimal endoillumination levels and display luminous emittance during three-dimensional heads-up vitreoretinal surgery. Retina. 2017;37(9):1746–9.PubMedGoogle Scholar
  46. 46.
    Eckardt C, Paulo EB. Heads-up surgery for vitreoretinal procedures: an experimental and clinical study. Retina. 2016;36(1):137–47.PubMedGoogle Scholar
  47. 47.
    Machemer R. The development of pars plana vitrectomy: a personal account. Graefes Arch Clin Exp Ophthalmol. 1995;233(8):453–68.PubMedGoogle Scholar
  48. 48.
    Peyman GA. Improved vitrectomy illumination system. Am J Ophthalmol. 1976;81(1):99–100.PubMedGoogle Scholar
  49. 49.
    Sakaguchi H, Oshima Y. Considering the illumination choices in vitreoretinal surgery. Retin Physician. 2012;9:26–31.Google Scholar
  50. 50.
    Chow DR. The evolution of endoillumination. Dev Ophthalmol. 2014;54:77–86.PubMedGoogle Scholar
  51. 51.
    Koelbl PS, Lingenfelder C, Spraul CW, Kampmeier J, Koch FH, Kim YK, et al. An intraocular micro light-emitting diode device for endo-illumination during pars plana vitrectomy. Eur J Ophthalmol. 2019;29(1):75–81.  https://doi.org/10.1177/1120672118757618.CrossRefPubMedGoogle Scholar
  52. 52.
    Henrich PB, Valmaggia C, Lang C, Cattin PC. The price for reduced light toxicity: do endoilluminator spectral filters decrease color contrast during Brilliant Blue G-assisted chromovitrectomy? Graefes Arch Clin Exp Ophthalmol. 2014;252(3):367–74.PubMedGoogle Scholar
  53. 53.
    Witmer MT, Dugel PU. Machines and cutters: constellation. In: Oh H, Oshima Y, editors. Microincision vitrectomy surgery: emerging techniques and technology. New York: Karger Medical and Scientific Publishers; 2014. p. 1–7.Google Scholar
  54. 54.
    Lai TYY. Machines and cutters: Stellaris PC. In: Oh H, Oshima Y, editors. Microincision vitrectomy surgery: emerging techniques and technology. New York: Karger Medical and Scientific Publishers; 2014. p. 8–16.Google Scholar
  55. 55.
    Morales-Canton V, Kawakami-Campos PA. Machines and cutters: VersaVIT—potential and perspectives of office-based vitrectomy. In: Oh H, Oshima Y, editors. Microincision vitrectomy surgery: emerging techniques and technology. New York: Karger Medical and Scientific Publishers; 2014. p. 17–22.Google Scholar
  56. 56.
    Seider MI, Nomides REK, Hahn P, Mruthyunjaya P, Mahmoud TH. Scleral buckling with chandelier illumination. J Ophthalmic Vis Res. 2016;11(3):304–9.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Rodrigues EB, Meyer CH, Kroll P. Chromovitrectomy: a new field in vitreoretinal surgery. Graefes Arch Clin Exp Ophthalmol. 2005;243(4):291–3.PubMedGoogle Scholar
  58. 58.
    Kadonosono K, Itoh N, Uchio E, Nakamura S, Ohno S. Staining of internal limiting membrane in macular hole surgery. Arch Ophthalmol. 2000;118(8):1116–8.PubMedGoogle Scholar
  59. 59.
    Grisanti S, Altvater A, Peters S. Safety parameters for indocyanine green in vitreoretinal surgery. Dev Ophthalmol. 2008;42:43–68.PubMedGoogle Scholar
  60. 60.
    Al-Halafi AM. Chromovitrectomy: update. Saudi J Ophthalmol. 2013;27(4):271–6.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Margherio RR, Margherio AR, Pendergast SD, Williams GA, Garretson BR, Strong LE, et al. Vitrectomy for retained lens fragments after phacoemulsification. Ophthalmology. 1997;104(9):1426–32.PubMedGoogle Scholar
  62. 62.
    Ho SF, Zaman A. Clinical features and outcomes of pars plana vitrectomy in patients with retained lens fragments after phacoemulsification. J Cataract Refract Surg. 2007;33(12):2106–10.PubMedGoogle Scholar
  63. 63.
    Hansson LJ, Larsson J. Vitrectomy for retained lens fragments in the vitreous after phacoemulsification. J Cataract Refract Surg. 2002;28(6):1007–11.PubMedGoogle Scholar
  64. 64.
    Borne MJ, Tasman W, Regillo C, Malecha M, Sarin L. Outcomes of vitrectomy for retained lens fragments. Ophthalmology. 1996;103(6):971–6.PubMedGoogle Scholar
  65. 65.
    Scott IU, Flynn HW Jr, Smiddy WE, Murray TG, Moore JK, Lemus DR, et al. Clinical features and outcomes of pars plana vitrectomy in patients with retained lens fragments. Ophthalmology. 2003;110(8):1567–72.PubMedGoogle Scholar
  66. 66.
    Ho LY, Doft BH, Wang L, Bunker CH. Clinical predictors and outcomes of pars plana vitrectomy for retained lens material after cataract extraction. Am J Ophthalmol. 2009;147(4):587–594.e1.PubMedGoogle Scholar
  67. 67.
    Kadonosono K, Yamakawa T, Uchio E, Yanagi Y, Tamaki Y, Araie M. Comparison of visual function after epiretinal membrane removal by 20-gauge and 25-gauge vitrectomy. Am J Ophthalmol. 2006;142(3):513–5.PubMedGoogle Scholar
  68. 68.
    Chang C-J, Chang Y-H, Chiang S-Y, Lin L-T. Comparison of clear corneal phacoemulsification combined with 25-gauge transconjunctival sutureless vitrectomy and standard 20-gauge vitrectomy for patients with cataract and vitreoretinal diseases. J Cataract Refract Surg. 2005;31(6):1198–207.PubMedGoogle Scholar
  69. 69.
    Cho M, Chan RP. 23-gauge pars plana vitrectomy for management of posteriorly dislocated crystalline lens. Clin Ophthalmol. 2011;5:1737–43.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Arevalo JF, Berrocal MH, Arias JD, Banaee T. Minimally invasive vitreoretinal surgery: is sutureless vitrectomy the future of vitreoretinal surgery? J Ophthalmic Vis Res. 2011;6(2):136–44.PubMedGoogle Scholar
  71. 71.
    Shah GK, Ho VY. Vitrectomy platforms go to the next level. Retina Spec [Internet]. 2016. http://www.retina-specialist.com/article/noninfectious-uveitis-enriching-our-toolbox-1. [Cited 2018 Sept 17].
  72. 72.
    Kuhn F, Mester V, Berta A. The Tano Diamond Dusted Membrane Scraper: indications and contraindications. Acta Ophthalmol Scand. 1998;76(6):754–5.PubMedGoogle Scholar
  73. 73.
    Hsu J. Nitinol flex loop-assisted retrieval and sutureless intrascleral refixation of a dislocated intraocular lens implant. Retin Cases Brief Rep. 2018; E-pub before print.Google Scholar
  74. 74.
    Charles S, Calzada J, Wood B, editors. General posterior segment techniques. In: Vitreous microsurgery. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2011. p. 45–75.Google Scholar
  75. 75.
    Villegas V, Murray T. Know your retinal surgery toolbox. Retin Physician. 2018;15:24–9.Google Scholar
  76. 76.
    Charles S, Calzada J, Wood B, editors. Vitrectomy for retinal detachment. In: Vitreous microsurgery. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2011. p. 135–8.Google Scholar
  77. 77.
    Kuhn F. Endolaser. In: Kuhn F, editor. Vitreoretinal surgery: strategies and tactics [Internet]. Cham: Springer International Publishing; 2016. p. 263–76.  https://doi.org/10.1007/978-3-319-19479-0_30. [Cited 2018 Sept 24].CrossRefGoogle Scholar
  78. 78.
    Barak Y, Lee ES, Schaal S. Sealing effect of external diathermy on leaking sclerotomies after small-gauge vitrectomy: a clinicopathological report. JAMA Ophthalmol. 2014;132(7):891–2.PubMedGoogle Scholar
  79. 79.
    Reibaldi M, Longo A, Reibaldi A, Avitabile T, Pulvirenti A, Lippolis G, et al. Diathermy of leaking sclerotomies after 23-gauge transconjunctival pars plana vitrectomy: a prospective study. Retina. 2013;33(5):939–45.PubMedGoogle Scholar
  80. 80.
    Jusufbegovic D, Ozkok A, Schaal S. Intraoperative optical coherence tomography validates the immediate efficacy of external diathermy in sealing 25-gauge sclerotomy wounds. Retina. 2017;37(2):402–4.PubMedGoogle Scholar
  81. 81.
    Chang S. Low viscosity liquid fluorochemicals in vitreous surgery. Am J Ophthalmol. 1987;103(1):38–43.PubMedGoogle Scholar
  82. 82.
    Georgalas I, Ladas I, Tservakis I, Taliantzis S, Gotzaridis E, Papaconstantinou D, et al. Perfluorocarbon liquids in vitreoretinal surgery: a review of applications and toxicity. Cutan Ocul Toxicol. 2011;30(4):251–62.PubMedGoogle Scholar
  83. 83.
    Randolph JC, Diaz RI, Sigler EJ, Calzada JI, Charles S. 25-gauge pars plana vitrectomy with medium-term postoperative perfluoro-n-octane for the repair of giant retinal tears. Graefes Arch Clin Exp Ophthalmol. 2016;254(2):253–7.PubMedGoogle Scholar
  84. 84.
    Eiger-Moscovich M, Gershoni A, Axer-Siegel R, Weinberger D, Ehrlich R. Short-term vitreoretinal tamponade with heavy liquid following surgery for giant retinal tear. Curr Eye Res. 2017;42(7):1074–8.PubMedGoogle Scholar
  85. 85.
    Zhang Z, Wei Y, Jiang X, Zhang S. Surgical outcomes of 27-gauge pars plana vitrectomy with short-term postoperative tamponade of perfluorocarbon liquid for repair of giant retinal tears. Int Ophthalmol. 2018;38(4):1505–13.PubMedGoogle Scholar
  86. 86.
    Mikhail MA, Mangioris G, Best RM, McGimpsey S, Chan WC. Management of giant retinal tears with vitrectomy and perfluorocarbon liquid postoperatively as a short-term tamponade. Eye. 2017;31(9):1290–5.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Kamei M, Tano Y. Tissue plasminogen activator-assisted vitrectomy: surgical drainage of submacular hemorrhage. Dev Ophthalmol. 2009;44:82–8.PubMedGoogle Scholar
  88. 88.
    Vander JF. Tissue plasminogen activator irrigation to facilitate removal of subretinal hemorrhage during vitrectomy. Ophthalmic Surg. 1992;23(5):361–3.PubMedGoogle Scholar
  89. 89.
    Kamei M, Tano Y, Maeno T, Ikuno Y, Mitsuda H, Yuasa T. Surgical removal of submacular hemorrhage using tissue plasminogen activator and perfluorocarbon liquid. Am J Ophthalmol. 1996;121(3):267–75.PubMedGoogle Scholar
  90. 90.
    Moriarty AP, McAllister IL, Constable IJ. Initial clinical experience with tissue plasminogen activator (tPA) assisted removal of submacular haemorrhage. Eye. 1995;9(Pt 5):582–8.PubMedGoogle Scholar
  91. 91.
    Moisseiev E, Ben Ami T, Barak A. Vitrectomy and subretinal injection of tissue plasminogen activator for large submacular hemorrhage secondary to AMD. Eur J Ophthalmol. 2014;24(6):925–31.PubMedGoogle Scholar
  92. 92.
    Peyman GA, Nelson NC, Alturki W, Blinder KJ, Paris CL, Desai UR, et al. Tissue plasminogen activating factor assisted removal of subretinal hemorrhage. Ophthalmic Surg. 1991;22(10):575–82.PubMedGoogle Scholar
  93. 93.
    Lim JI, Drews-Botsch C, Sternberg P, Capone A, Aaberg TM. Submacular hemorrhage removal. Ophthalmology. 1995;102(9):1393–9.PubMedGoogle Scholar
  94. 94.
    Ghazi NG, Abboud EB, Nowilaty SR, Alkuraya H, Alhommadi A, Cai H, et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Hum Genet. 2016;135(3):327–43.PubMedGoogle Scholar
  95. 95.
    Testa F, Maguire AM, Rossi S, Pierce EA, Melillo P, Marshall K, et al. Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2. Ophthalmology. 2013;120(6):1283–91.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Mühlfriedel R, Michalakis S, Garcia Garrido M, Biel M, Seeliger MW. Optimized technique for subretinal injections in mice. Methods Mol Biol. 2013;935:343–9.PubMedGoogle Scholar
  97. 97.
    Ikeda Y, Yonemitsu Y, Miyazaki M, Kohno R-I, Murakami Y, Murata T, et al. Stable retinal gene expression in nonhuman primates via subretinal injection of SIVagm-based lentiviral vectors. Hum Gene Ther. 2009;20(6):573–9.PubMedGoogle Scholar
  98. 98.
    Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–16.Google Scholar
  99. 99.
    da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, et al. Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36(4):328.PubMedGoogle Scholar
  100. 100.
    Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–46.PubMedGoogle Scholar
  101. 101.
    Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Dang W, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med. 2018;10(435):eaao4097.PubMedGoogle Scholar
  102. 102.
    Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S, et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep. 2014;2(2):205–18.Google Scholar
  103. 103.
    Kuhn F, Aylward B. Rhegmatogenous retinal detachment: a reappraisal of its pathophysiology and treatment. Ophthalmic Res. 2014;51(1):15–31.PubMedGoogle Scholar
  104. 104.
    Gomaa AR, Elbaha SM. Applying sutureless encircling number 41 band and transscleral chandelier-assisted laser retinopexy for scleral buckling procedure. J Ophthalmol. 2017;2017:4671305.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Heimann H, Hellmich M, Bornfeld N, Bartz-Schmidt KU, Hilgers RD, Foerster MH. Scleral buckling versus primary vitrectomy in rhegmatogenous retinal detachment (SPR Study): design issues and implications. SPR Study report no. 1. Graefes Arch Clin Exp Ophthalmol. 2001;239(8):567–74.PubMedGoogle Scholar
  106. 106.
    Foster WJ, Dowla N, Joshi SY, Nikolaou M. The fluid mechanics of scleral buckling surgery for the repair of retinal detachment. Graefes Arch Clin Exp Ophthalmol. 2010;248(1):31–6.PubMedGoogle Scholar
  107. 107.
    Storey P, Alshareef R, Khuthaila M, London N, Leiby B, DeCroos C, et al. Pars plana vitrectomy and scleral buckle versus pars plana vitrectomy alone for patients with rhegmatogenous retinal detachment at high risk for proliferative vitreoretinopathy. Retina. 2014;34(10):1945–51.PubMedGoogle Scholar
  108. 108.
    Crama N, Klevering BJ. The removal of hydrogel explants: an analysis of 467 consecutive cases. Ophthalmology. 2016;123(1):32–8.PubMedGoogle Scholar
  109. 109.
    Yoshizumi MO, Friberg T. Erosion of implants in retinal detachment surgery. Ann Ophthalmol. 1983;15(5):430–4.PubMedGoogle Scholar
  110. 110.
    Shanmugam PM, Ramanjulu R, Mishra KCD, Sagar P. Novel techniques in scleral buckling. Indian J Ophthalmol. 2018;66(7):909–15.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Hu Y, Si S, Xu K, Chen H, Han L, Wang X, et al. Outcomes of scleral buckling using chandelier endoillumination. Acta Ophthalmol (Copenh). 2017;95(6):591–4.Google Scholar
  112. 112.
    Imai H, Tagami M, Azumi A. Scleral buckling for primary rhegmatogenous retinal detachment using noncontact wide-angle viewing system with a cannula-based 25 G chandelier endoilluminator. Clin Ophthalmol. 2015;9:2103–7.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Ohm J. Über die Behandlung der Netzhautablösung durch operative Entleerung der subretinalen Flüssigkeit und Einspritzung von Luft in den Glaskörper [On the treatment of retinal detachment by surgical evacuation of subretinal fluid and injection of air into the vitreous]. Albrecht Von Graefes Arch Für Ophthalmol. 1911;79(3):442–50.Google Scholar
  114. 114.
    Cibis PA, Becker B, Okun E, Canaan S. The use of liquid silicone in retinal detachment surgery. Arch Ophthalmol. 1962;68:590–9.PubMedGoogle Scholar
  115. 115.
    Norton EW. Intraocular gas in the management of selected retinal detachments. Trans Am Acad Ophthalmol Otolaryngol. 1973;77(2):OP85–98.PubMedGoogle Scholar
  116. 116.
    Mohamed S, Lai TY. Intraocular gas in vitreoretinal surgery. Hong Kong J Ophthalmol. 2010;14(1):8–13.Google Scholar
  117. 117.
    Kreissig I. The perfluorocarbon gases. In: A practical guide to minimal surgery for retinal detachment. 1st ed. Stuttgart: Thieme; 2000. p. 129–32.Google Scholar
  118. 118.
    Williamson TH. Principles of internal tamponade. In: Vitreoretinal surgery [Internet]. 2nd ed. Berlin: Springer; 2013. p. 61–87. //www.springer.com/us/book/9783642318719. [Cited 2018 Sept 16].Google Scholar
  119. 119.
    Abrams GW, Azen SP, McCuen BW, Flynn HW, Lai MY, Ryan SJ. Vitrectomy with silicone oil or long-acting gas in eyes with severe proliferative vitreoretinopathy: results of additional and long-term follow-up. Silicone Study report 11. Arch Ophthalmol. 1997;115(3):335–44.PubMedGoogle Scholar
  120. 120.
    Adelman RA, Parnes AJ, Sipperley JO, Ducournau D, European Vitreo-Retinal Society (EVRS) Retinal Detachment Study Group. Strategy for the management of complex retinal detachments: the European vitreo-retinal society retinal detachment study report 2. Ophthalmology. 2013;120(9):1809–13.PubMedGoogle Scholar
  121. 121.
    Foster WJ. Vitreous substitutes. Expert Rev Ophthalmol. 2008;3(2):211–8.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Cazabon S, Hillier RJ, Wong D. Heavy silicone oil: a “novel” intraocular tamponade agent. Optom Vis Sci. 2011;88(6):772–5.PubMedGoogle Scholar
  123. 123.
    Rizzo S, Romagnoli MC, Genovesi-Ebert F, Belting C. Surgical results of heavy silicone oil HWS-45 3000 as internal tamponade for inferior retinal detachment with PVR: a pilot study. Graefes Arch Clin Exp Ophthalmol. 2011;249(3):361–7.PubMedGoogle Scholar
  124. 124.
    Er H. Primary heavy silicone oil usage in inferior rhegmatogenous retinal detachment. Ophthalmologica. 2010;224(2):122–5.PubMedGoogle Scholar
  125. 125.
    Levasseur SD, Schendel S, Machuck RWA, Dhanda D. High-density silicone oil Densiron-68 as an intraocular tamponade for primary inferior retinal detachments. Retina. 2013;33(3):627–33.PubMedGoogle Scholar
  126. 126.
    Reza AT. Postoperative Perfluro-N-Octane tamponade for complex retinal detachment surgery. Bangladesh Med Res Counc Bull. 2014;40(2):63–9.PubMedGoogle Scholar
  127. 127.
    Sigler EJ, Randolph JC, Calzada JI, Charles S. Pars plana vitrectomy with medium-term postoperative perfluoro-N-octane for recurrent inferior retinal detachment complicated by advanced proliferative vitreoretinopathy. Retina. 2013;33(4):791–7.PubMedGoogle Scholar
  128. 128.
    Rizzo S, Genovesi-Ebert F, Murri S, Belting C, Vento A, Cresti F, et al. 25-gauge, sutureless vitrectomy and standard 20-gauge pars plana vitrectomy in idiopathic epiretinal membrane surgery: a comparative pilot study. Graefes Arch Clin Exp Ophthalmol. 2006;244(4):472–9.PubMedGoogle Scholar
  129. 129.
    Khan MA, Kuley A, Riemann CD, Berrocal MH, Lakhanpal RR, Hsu J, et al. Long-term visual outcomes and safety profile of 27-gauge pars plana vitrectomy for posterior segment disease. Ophthalmology. 2018;125(3):423–31.PubMedGoogle Scholar
  130. 130.
    Tayyab H, Khan AA, Sadiq MAA, Karamat I. Comparison of 23 gauge transconjunctival releasable suture vitrectomy with standard 20 gauge vitrectomy. Pak J Med Sci. 2018;34(2):328–32.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Xia F, Jiang Y-Q. Clinical outcomes of 23-gauge vitrectomy may be better than 20-gauge vitrectomy for retinal detachment repair. Mol Vis. 2015;21:893–900.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Ho J, Grabowska A, Ugarte M, Muqit MM. A comparison of 23-gauge and 20-gauge vitrectomy for proliferative sickle cell retinopathy—clinical outcomes and surgical management. Eye (Lond). 2018;32(9):1449–54.Google Scholar
  133. 133.
    Ho VY, Shah GK. Short-and long-term outcomes of vitreoretinal surgeries with deferred first postoperative visits at day 3 or later. J Vitreoretinal Dis. 2017;1(2):126–32.Google Scholar
  134. 134.
    Ringeisen AL, Parke DW. Reconsidering the postoperative day 0 visit for retina surgery. Ophthalmic Surg Lasers Imaging Retina. 2018;49(9):e52–6.PubMedGoogle Scholar
  135. 135.
    Rahmani S, Eliott D. Postoperative endophthalmitis: a review of risk factors, prophylaxis, incidence, microbiology, treatment, and outcomes. Semin Ophthalmol. 2018;33(1):95–101.PubMedGoogle Scholar
  136. 136.
    Kunimoto DY, Kaiser RS, Wills Eye Retina Service. Incidence of endophthalmitis after 20- and 25-gauge vitrectomy. Ophthalmology. 2007;114(12):2133–7.PubMedGoogle Scholar
  137. 137.
    Scott IU, Flynn HW Jr, Acar N, Dev S, Shaikh S, Mittra RA, et al. Incidence of endophthalmitis after 20-gauge vs 23-gauge vs 25-gauge pars plana vitrectomy. Graefes Arch Clin Exp Ophthalmol. 2011;249(3):377–80.PubMedGoogle Scholar
  138. 138.
    Wu L, Berrocal MH, Arévalo JF, Carpentier C, Rodriguez FJ, Alezzandrini A, et al. Endophthalmitis after pars plana vitrectomy: results of the Pan American Collaborative Retina Study Group. Retina. 2011;31(4):673–8.PubMedGoogle Scholar
  139. 139.
    Rizzo S, Belting C, Genovesi-Ebert F, di Bartolo E. Incidence of retinal detachment after small-incision, sutureless pars plana vitrectomy compared with conventional 20-gauge vitrectomy in macular hole and epiretinal membrane surgery. Retina. 2010;30(7):1065–71.PubMedGoogle Scholar
  140. 140.
    Neffendorf JE, Gupta B, Williamson TH. Intraoperative complications of patients undergoing small-gauge and 20-gauge vitrectomy: a database study of 4,274 procedures. Eur J Ophthalmol. 2017;27(2):226–30.PubMedGoogle Scholar
  141. 141.
    Gass JD. Sympathetic ophthalmia following vitrectomy. Am J Ophthalmol. 1982;93(5):552–8.PubMedGoogle Scholar
  142. 142.
    Gupta OPI, Weichel ED, Regillo CD, Fineman MS, Kaiser RS, Ho AC, et al. Postoperative complications associated with 25-gauge pars plana vitrectomy. Ophthalmic Surg Lasers Imaging. 2007;38(4):270–5.PubMedGoogle Scholar
  143. 143.
    Roizenblatt M, Edwards TL, Gehlbach PL. Robot-assisted vitreoretinal surgery: current perspectives. Robot Surg. 2018;5:1–11.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Gonenc B, Handa J, Gehlbach P, Taylor RH, Iordachita I. A comparative study for robot assisted vitreoretinal surgery: micron vs. the steady-hand robot. IEEE Int Conf Robot Autom. 2013;2013:4832–7.Google Scholar
  145. 145.
    Balicki M, Xia T, Jung MY, Deguet A, Vagvolgyi B, Kazanzides P, Taylor R. Prototyping a hybrid cooperative and tele-robotic surgical system for retinal microsurgery. MIDAS J. 2011; E-pub Dec 2011.Google Scholar
  146. 146.
    Gonenc B, Handa J, Gehlbach P, Taylor RH, Iordachita I. Design of 3-DOF force sensing micro-forceps for robot assisted vitreoretinal surgery. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5686–9.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Edwards TL, Xue K, Meenink HCM, Beelen MJ, Naus GJL, Simunovic MP, et al. First-in-human study of the safety and viability of intraocular robotic surgery. Nat Biomed Eng. 2018;2:649–56.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Carrasco-Zevallos OM, Keller B, Viehland C, Shen L, Seider MI, Izatt JA, et al. Optical coherence tomography for retinal surgery: perioperative analysis to real-time four-dimensional image-guided surgery. Invest Ophthalmol Vis Sci. 2016;57(9):OCT37–50.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sana Idrees
    • 1
  • Ajay E. Kuriyan
    • 1
  • Stephen G. Schwartz
    • 2
  • Jean-Marie Parel
    • 2
  • Harry W. FlynnJr
    • 2
    Email author
  1. 1.Flaum Eye Institute, University of Rochester Medical CenterRochesterUSA
  2. 2.Bascom Palmer Eye Institute, University of MiamiMiamiUSA

Personalised recommendations