Recent Developments in Maculopathy

  • Francesco Bandello
  • Marco Battista
  • Maria Brambati
  • Vincenzo Starace
  • Alessandro Arrigo
  • Maurizio Battaglia Parodi


Maculopathies represent an extremely heterogeneous group of retinal diseases, which benefitted from the introduction and development of even more advanced diagnostic and therapeutic procedures. Multimodal imaging techniques strongly improved the diagnostic workout of maculopathies, due to their capability to provide very detailed microstructural and functional information, in vivo, non-invasively. On the other side, intravitreal treatments have a very strong impact on the natural history of maculopathies, determining significant improvements of retinal anatomy and visual function, as well as an increase of patients’ quality of life. In this chapter, we provided an overview of the current diagnostic and therapeutic strategies adopted in the field of maculopathies. Moreover, we discussed about future perspective regarding the improvement of diagnostic tools, by means of innovative techniques, such as artificial intelligence; new promising treatments, namely gene therapies and retinal microchips, have been shown as well.


Maculopathies Optical coherence tomography Optical coherence tomography angiography Multimodal imaging Anti-VEGF Steroids 


  1. 1.
    Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood in the human retina. Circulation. 1961;24:82–6.PubMedGoogle Scholar
  2. 2.
    Marmor MF, Ravin JG. Fluorescein angiography: insight and serendipity a half century ago. Arch Ophthalmol. 2011;129(7):943–8.PubMedGoogle Scholar
  3. 3.
    Yannuzzi LA, Slakter JS, Sorenson JA, Guyer DR, Orlock DA. Digital indocyanine green videoangiography and choroidal neovascularization. Retina. 1992;12(3):191–223.PubMedGoogle Scholar
  4. 4.
    Yannuzzi LA. Indocyanine green angiography: a perspective on use in the clinical setting. Am J Ophthalmol. 2011;151:745–751.e1.PubMedGoogle Scholar
  5. 5.
    Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991;254:1178–81.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Wojtkowski M, Leitgeb R, Kowalczyk A, et al. In vivo human retinal imaging by Fourier Domain optical coherence tomography. J Biomed Opt. 2002;7:457–63.PubMedGoogle Scholar
  7. 7.
    Postaid B, Baumann B, Huang D, et al. Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt Express. 2010;18:200029–48.Google Scholar
  8. 8.
    Lavinsky F, Lavinsky D. Novel perspectives on swept-source optical coherence tomography. Int J Retina Vitreous. 2016;2:25. eCollection 2016.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Gabriele ML, Wollstein G, Ishikawa H, et al. Optical coherence tomography: history, current status, and laboratory work. Invest Ophthalmol Vis Sci. 2011;52(5):2425–36.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Kashani AH, Chen CL, Gahm JK, et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res. 2017;60:66–100.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Tan ACS, Tan GS, Denniston AK, et al. An overview of the clinical applications of optical coherence tomography angiography. Eye (Lond). 2018;32(2):262–86.Google Scholar
  12. 12.
    Frampton GK, Kalita N, Payne L, et al. Fundus autofluorescence imaging: systematic review of test accuracy for the diagnosis and monitoring of retinal conditions. Eye (Lond). 2017;31(7):995–1007.Google Scholar
  13. 13.
    Wolf-Schnurrbusch UE, Wittwer VV, Ghanem R, et al. Blue light versus green light autofluorescence: lesion size of areas with geographic atrophy. Invest Ophthalmol Vis Sci. 2011;52:9497–502.PubMedGoogle Scholar
  14. 14.
    Maryse LL, Carroll J, Skala MC. Imaging retinal melanin: a review of current technologies. J Biol Eng. 2018;12:29.Google Scholar
  15. 15.
    Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2):167–75.PubMedGoogle Scholar
  16. 16.
    Maloca P, Hasler PW, Barthelmes D, et al. Safety and feasibility of a novel sparse optical coherence tomography device for patient-delivered retina home monitoring. Transl Vis Sci Technol. 2018;7(4):8.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Solomon SD, Lindsley K, Vedula SS, Krzystolik MG, Hawkins BS. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst Rev. 2014;8(8):CD005139.Google Scholar
  18. 18.
    Gower EW, Stein JD, Shekhawat NS, et al. Geographic and demographic variation in use of ranibizumab versus bevacizumab for neovascular age-related macular degeneration in the United States. Am J Ophthalmol. 2017;184:157–66.PubMedGoogle Scholar
  19. 19.
    CATT Research Group, Martin DF, Maguire MG, et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 2011;364(20):1897–908.Google Scholar
  20. 20.
    Rofagha S, Bhisitkul RB, Boyer DS, Sadda SR, Zhang K. Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology. 2013;120(11):2292–9.PubMedGoogle Scholar
  21. 21.
    Brown DM, Kaiser PK, Michels M, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1432–44.PubMedGoogle Scholar
  22. 22.
    Heier JS, Brown DM, Chong V, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012;119:2537–48.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Schmidt-Erfurth U, Kaiser PK, Korobelnik JF, et al. Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week results of the VIEW studies. Ophthalmology. 2014;121(1):193–201.PubMedGoogle Scholar
  24. 24.
    Schlottmann PG, Alezzandrini AA, Zas M, Rodriguez FJ, Luna JDWL. New treatment modalities for neovascular age-related macular degeneration. Asia Pac J Ophthalmol (Phila). 2017;6:514–9.Google Scholar
  25. 25.
    Dugel PU, Jaffe GJ, Sallstig P, et al. Brolucizumab versus aflibercept in participants with neovascular age-related macular degeneration: a randomized trial. Ophthalmology. 2017;124(9):1296–304.PubMedGoogle Scholar
  26. 26.
    Wykoff CC, Hariprasad SM, Zhou B. Innovation in neovascular age-related macular degeneration: consideration of brolucizumab, abicipar, and the port delivery system. Ophthalmic Surg Lasers Imaging Retina. 2018;49(12):913–7.PubMedGoogle Scholar
  27. 27.
    Khurana R. Safety and efficacy of abicipar in patients with neovascular age-related macular degeneration. Lect Present Am Acad Ophthalmol 2018 Annu Meet Oct 27, Chicago; 2018.Google Scholar
  28. 28.
    Syed YY. Fluocinolone acetonide intravitreal implant 0.19 mg (ILUVIEN): a review in diabetic macular edema. Drugs. 2017;77:575–83.PubMedGoogle Scholar
  29. 29.
    Massa H, Nagar AM, Vergados A, Dadoukis P, Patra S, Panos GD. Intravitreal fluocinolone acetonide implant (ILUVIEN®) for diabetic macular oedema: a literature review. J Int Med Res. 2019;47(1):31–43.PubMedGoogle Scholar
  30. 30.
    Campochiaro PA, Brown DM, Pearson A, et al. Long-term benefit of sustained-delivery fluocinolone acetonide vitreous inserts for diabetic macular edema. Ophthalmology. 2011;118(4):626–635.e2.PubMedGoogle Scholar
  31. 31.
    Arbabi A, Liu A, Ameri H. Gene therapy for inherited retinal degeneration. J Ocul Pharmacol Ther. 2019;35(2):79–97.PubMedGoogle Scholar
  32. 32.
    Millington-Ward S, Chadderton N, O’Reilly M, et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther. 2011;19:642–9.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21:583–93.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Tenenbaum L, Lehtonen E, Monahan PE. Evaluation of risks related to the use of adeno-associated virus-based vectors. Curr Gene Ther. 2003;3:545–65.PubMedGoogle Scholar
  36. 36.
    Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358:2231–9.PubMedGoogle Scholar
  37. 37.
    Hauswirth WW, Aleman TS, Kaushal S, et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther. 2008;19:979–90.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017;31:317–34.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Bennett J. Taking stock of retinal gene therapy: looking back and moving forward. Mol Ther. 2017;25:1076–94.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Cashman SM, Sadowski SL, Morris DJ, Frederick J, Kumar-Singh R. Intercellular trafficking of adenovirus-delivered HSV VP22 from the retinal pigment epithelium to the photoreceptors—implications for gene therapy. Mol Ther. 2002;6:813–23.PubMedGoogle Scholar
  41. 41.
    Trapani I, Colella P, Sommella A, et al. Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol Med. 2014;6:194–211.PubMedGoogle Scholar
  42. 42.
    Ghosh A, Yue Y, Duan D. Efficient transgene re-constitution with hybrid dual AAV vectors carrying the minimized bridging sequences. Hum Gene Ther. 2011;22:77–83.PubMedGoogle Scholar
  43. 43.
    Allocca M, Mussolino C, Garcia-Hoyos M, et al. Novel adeno-associated virus serotypes efficiently trans- duce murine photoreceptors. J Virol. 2007;81:11372–80.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Allocca M, Manfredi A, Iodice C, Di Vicino U, Auricchio A. AAV-mediated gene replacement, either alone or in combination with physical and pharmacological agents, results in partial and transient protection from photoreceptor degeneration associated with betaPDE deficiency. Invest Ophthalmol Vis Sci. 2011;52:5713–9.PubMedGoogle Scholar
  45. 45.
    Martin KR, Klein RL, Quigley HA. Gene delivery to the eye using adeno-associated viral vectors. Methods. 2002;28:267–75.PubMedGoogle Scholar
  46. 46.
    Li Q, Miller R, Han PY, et al. Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential. Mol Vis. 2008;14:1760–9.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Greenberg KP, Lee ES, Schaffer DV, Flannery G. Gene delivery to the retina using lentiviral vectors. Adv Exp Med Biol. 2006;572:255–66.PubMedGoogle Scholar
  48. 48.
    Balaggan KS, Ali RR. Ocular gene delivery using lentiviral vectors. Gene Ther. 2012;19:145–53.PubMedGoogle Scholar
  49. 49.
    White M, Whittaker R, Gandara C, Stoll EA. A guide to approaching regulatory considerations for lentiviral-mediated gene therapies. Hum Gene Ther Methods. 2017;28:163–76.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Harvey AR, Kamphuis W, Eggers R, et al. Intravitreal injection of adeno-associated viral vectors results in the transduction of different types of retinal neurons in neonatal and adult rats: a comparison with lentiviral vectors. Mol Cell Neurosci. 2002;21:141–57.PubMedGoogle Scholar
  51. 51.
    Ameri H. Prospect of retinal gene therapy following commercialization of voretigene neparvovec-rzyl for retinal dystrophy mediated by RPE65 mutation. J Curr Ophthalmol. 2018;30:1–2.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358:2240–8.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Bennett J, Wellman J, Marshall KA, et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet. 2016;388:661–72.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Dudus L, Anand V, Acland GM, et al. Persistent transgene product in retina, optic nerve and brain after intraocular injection of rAAV. Vis Res. 1999;39:2545–53.PubMedGoogle Scholar
  55. 55.
    Dalkara D, Byrne LC, Klimczak RR, et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med. 2013;5:189ra176.Google Scholar
  56. 56.
    Mace E, Caplette R, Marre O, et al. Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice. Mol Ther. 2015;3:7–16.Google Scholar
  57. 57.
    Feuer WJ, Schiffman JC, Davis JL, et al. Gene therapy for Leber hereditary optic neuropathy: initial results. Ophthalmology. 2016;123:558–70.PubMedGoogle Scholar
  58. 58.
    Adijanto J, Naash MI. Nanoparticle-based technologies for retinal gene therapy. Eur J Pharm Biopharm. 2015;95(Pt B):353–67.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Wang Y, Rajala A, Cao B, et al. Cell-specific promoters enable lipid-based nanoparticles to deliver genes to specific cells of the retina in vivo. Theranostics. 2016;6:1514–27.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Fink TL, Klepcyk PJ, Oette SM, et al. Plasmid size up to 20kbp does not limit effective in vivo lung gene transfer using compacted DNA nanoparticles. Gene Ther. 2006;13:1048–51.PubMedGoogle Scholar
  61. 61.
    Apaolaza PS, Del Pozo-Rodriguez A, Torrecilla J, et al. Solid lipid nanoparticle-based vectors intended for the treatment of X-linked juvenile retinoschisis by gene therapy: in vivo approaches in Rs1h-deficient mouse model. J Control Release. 2015;217:273–83.PubMedGoogle Scholar
  62. 62.
    Apaolaza PS, Del Pozo-Rodriguez A, Solinis MA, et al. Structural recovery of the retina in a retinoschisin-deficient mouse after gene replacement therapy by solid lipid nanoparticles. Biomaterials. 2016;90:40–9.PubMedGoogle Scholar
  63. 63.
    Bennicelli J, Wright JF, Komaromy A, et al. Reversal of blindness in animal models of leber congenital amaurosis using optimized AAV2-mediated gene transfer. Mol Ther. 2008;16:458–65.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Jacobson SG, Aleman TS, Cideciyan AV, et al. Identifying photoreceptors in blind eyes caused by RPE65 mutations: prerequisite for human gene therapy success. Proc Natl Acad Sci U S A. 2005;102:6177–82.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Morimura H, Fishman GA, Grover SA, Fulton AB, Berson EL, Dryja TP. Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or leber congenital amaurosis. Proc Natl Acad Sci U S A. 1998;95(6):3088–93.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Weleber RG, Pennesi ME, Wilson DJ, et al. Results at 2 years after gene therapy for RPE65-deficient Leber congenital amaurosis and severe early-childhood-onset retinal dystrophy. Ophthalmology. 2016;123:1606–20.PubMedGoogle Scholar
  67. 67.
    Pennesi ME, Weleber RG, Yang P, et al. Results at 5 years after gene therapy for RPE65-deficient retinal dystrophy. Hum Gene Ther. 2018. [Epub ahead of print].Google Scholar
  68. 68.
    Cideciyan AV, Jacobson SG, Beltran WA, et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc Natl Acad Sci U S A. 2013;110:E517–25.PubMedPubMedCentralGoogle Scholar
  69. 69.
    MacLaren RE, Groppe M, Barnard AR, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 2014;383:1129–37.PubMedPubMedCentralGoogle Scholar
  70. 70.
    MacLaren RE, Xue K, Barnard A, et al. Gene therapy for choroideremia in a multicenter dose escalation phase I/II clinical trial. Invest Ophthalmol Vis Sci. 2018;59:1195.Google Scholar
  71. 71.
    Battaglia Parodi M, Arrigo A, McLaren RE, et al. Vascular alterations revealed with optical coherence tomography angiography in patients with choroideremia. Retina. 2019;39(6):1200–5.PubMedGoogle Scholar
  72. 72.
    Mitsios A, Dubis AM, Moosajee M. Choroideremia: from genetic and clinical phenotyping to gene therapy and future treatments. Ther Adv Ophthalmol. 2018;10:2515841418817490.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Zrenner E, Bartz-Schmidt KU, Benav H, et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci. 2010;278:1489–97.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Jones BW, Marc RE. Retinal remodeling during retinal degeneration. Exp Eye Res. 2005;81(2):123–37.PubMedGoogle Scholar
  75. 75.
    Yanai D, Weiland JD, Mahadevappa M, Greenberg RJ, Fine YI, Humayun MS. Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. Am J Ophthalmol. 2007;143:820–7.PubMedGoogle Scholar
  76. 76.
    Hornig R, Laube T, Walter P, et al. A method and technical equipment for an acute human trial to evaluate retinal implant technology. J Neural Eng. 2005;2(1):S129–34.PubMedGoogle Scholar
  77. 77.
    Gerding H, Benner FP, Taneri S. Experimental implantation of epiretinal retina implants (EPI-RET) with an IOL-type receiver unit. J Neural Eng. 2007;4:S38–49.PubMedGoogle Scholar
  78. 78.
    Eysel UT, Walter P, Gekeler F, et al. Optical imaging reveals 2-dimensional patterns of cortical activation after local retinal stimulation with sub- and epiretinal visual prostheses. Investig Ophthalmol Vis Sci. 2002;43:ARVO E-Abstract 4486.Google Scholar
  79. 79.
    Eckhorn R, Wilms M, Schanze T, et al. Visual resolution with retinal implants estimated from recordings in cat visual cortex. Vis Res. 2006;46:2675–90.PubMedGoogle Scholar
  80. 80.
    Eckmiller R. Learning retina implants with epiretinal contacts. Ophthalmic Res. 1997;29:281–9.PubMedGoogle Scholar
  81. 81.
    Tran BK, Wolfensberger TJ. Retina-implant interaction after 16 months follow-up in a patient with an Argus II prosthesis. Klin Monatsbl Augenheilkd. 2017;234:538–40.PubMedGoogle Scholar
  82. 82.
    Stelzle M, Stett A, Brunner B, et al. Electrical properties of micro-photodiode arrays for use as artificial retina implant. Biomed Microdevices. 2001;3:133–42.Google Scholar
  83. 83.
    Stingl K, Bach M, Bartz-Schmidt KU, et al. Safety and efficacy of subretinal visual implants in humans: methodological aspects. Clin Exp Optom. 2013;96:4–13.PubMedGoogle Scholar
  84. 84.
    Stingl K, Schippert R, Bartz-Schmidt KU, et al. Interim results of a multicenter trial with the new electronic subretinal implant Alpha AMS in 15 patients blind from inherited retinal degenerations. Front Neurosci. 2017;11:445.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Luo YH, da Cruz L. The Argus((R)) II retinal prosthesis system. Prog Retin Eye Res. 2016;50:89–107.PubMedGoogle Scholar
  86. 86.
    Gekeler K, Bartz-Schmidt KU, Sachs H, et al. Implantation, removal and replacement of subretinal electronic implants for restoration of vision in patients with retinitis pigmentosa. Curr Opin Ophthalmol. 2018;29(3):239–47.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Francesco Bandello
    • 1
  • Marco Battista
    • 1
  • Maria Brambati
    • 1
  • Vincenzo Starace
    • 1
  • Alessandro Arrigo
    • 1
  • Maurizio Battaglia Parodi
    • 1
  1. 1.Department of OphthalmologyVita-Salute San Raffaele University, Ospedale San RaffaeleMilanItaly

Personalised recommendations