Advertisement

Recent Advances in Uveitis

  • Xia Ni Wu
  • Lazha Ahmed Talat Sharief
  • Roy Schwartz
  • Þóra Elísabet Jónsdóttir
  • Anastasia Tasiopoulou
  • Ahmed Al-Janabi
  • Noura Al Qassimi
  • Amgad Mahmoud
  • Sue Lightman
  • Oren Tomkins-NetzerEmail author
Chapter

Abstract

The uveitides are a collection of more than 30 diseases manifesting as intraocular inflammation. Diagnosis can be a challenge with different conditions presenting with similar signs and symptoms. Many of these conditions require prompt treatment using systemic and local therapy, with the aim of preventing vision loss. In this chapter we describe the recent advances in the diagnosis of uveitis, including the use of ultra-wide field imaging and optical coherence tomography angiography. We further focus on the management of specific infectious and non-infectious causes of uveitis, using both systemic immunosuppression and local treatment options.

Keywords

Uveitis Biologics Corticosteroids Macular edema 

References

  1. 1.
    Tomkins-Netzer O, Talat L, Bar A, et al. Long-term clinical outcome and causes of vision loss in patients with uveitis. Ophthalmology. 2014;121(12):2387–92.PubMedGoogle Scholar
  2. 2.
    Jabs DA. Immunosuppression for the Uveitides. Ophthalmology. 2018;125(2):193–202.PubMedGoogle Scholar
  3. 3.
    Jabs DA, Busingye J. Approach to the diagnosis of the uveitides. Am J Ophthalmol. 2013;156(2):228–36.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Jabs DA, Nussenblatt RB, Rosenbaum JT. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol. 2005;140(3):509–16.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Jabs DA, Dick A, Doucette JT, et al. Interobserver agreement among uveitis experts on uveitic diagnoses: the standardization of uveitis nomenclature experience. Am J Ophthalmol. 2018;186:19–24.PubMedGoogle Scholar
  6. 6.
    Campbell JP, Leder HA, Sepah YJ, et al. Wide-field retinal imaging in the management of noninfectious posterior uveitis. Am J Ophthalmol. 2012;154(5):908–11 e2.PubMedGoogle Scholar
  7. 7.
    Aggarwal K, Mulkutkar S, Mahajan S, et al. Role of ultra-wide field imaging in the management of tubercular posterior uveitis. Ocul Immunol Inflamm. 2016;24(6):631–6.PubMedGoogle Scholar
  8. 8.
    Mesquida M, Llorenc V, Fontenla JR, et al. Use of ultra-wide-field retinal imaging in the management of active Behcet retinal vasculitis. Retina. 2014;34(10):2121–7.PubMedGoogle Scholar
  9. 9.
    Spaide RF, Fujimoto JG, Waheed NK. Optical coherence tomography angiography. Retina. 2015;35(11):2161–2.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Levison AL, Baynes KM, Lowder CY, et al. Choroidal neovascularisation on optical coherence tomography angiography in punctate inner choroidopathy and multifocal choroiditis. Br J Ophthalmol. 2017;101(5):616–22.PubMedGoogle Scholar
  11. 11.
    Lavinsky F, Lavinsky D. Novel perspectives on swept-source optical coherence tomography. Int J Retina Vitreous. 2016;2:25.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Dastiridou AI, Bousquet E, Kuehlewein L, et al. Choroidal imaging with swept-source optical coherence tomography in patients with birdshot chorioretinopathy: choroidal reflectivity and thickness. Ophthalmology. 2017;124(8):1186–95.PubMedGoogle Scholar
  13. 13.
    Hosoda Y, Uji A, Hangai M, et al. Relationship between retinal lesions and inward choroidal bulging in Vogt-Koyanagi-Harada disease. Am J Ophthalmol. 2014;157(5):1056–63.PubMedGoogle Scholar
  14. 14.
    Juanola X, Loza Santamaria E, Cordero-Coma M, Group SW. Description and prevalence of spondyloarthritis in patients with anterior uveitis: the SENTINEL Interdisciplinary Collaborative Project. Ophthalmology. 2016;123(8):1632–6.PubMedGoogle Scholar
  15. 15.
    Bodis G, Toth V, Schwarting A. Role of human leukocyte antigens (HLA) in autoimmune diseases. Rheumatol Ther. 2018;5(1):5–20.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Wakefield D, Yates W, Amjadi S, McCluskey P. HLA-B27 anterior uveitis: immunology and immunopathology. Ocul Immunol Inflamm. 2016;24(4):450–9.PubMedGoogle Scholar
  17. 17.
    Sykes MP, Hamilton L, Jones C, Gaffney K. Prevalence of axial spondyloarthritis in patients with acute anterior uveitis: a cross-sectional study utilising MRI. RMD Open. 2018;4(1):e000553.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Haroon M, O'Rourke M, Ramasamy P, et al. A novel evidence-based detection of undiagnosed spondyloarthritis in patients presenting with acute anterior uveitis: the DUET (Dublin Uveitis Evaluation Tool). Ann Rheum Dis. 2015;74(11):1990–5.PubMedGoogle Scholar
  19. 19.
    Kim M, Won JY, Choi SY, et al. Anti-TNFalpha treatment for HLA-B27-positive ankylosing spondylitis-related uveitis. Am J Ophthalmol. 2016;170:32–40.PubMedGoogle Scholar
  20. 20.
    Levy-Clarke G, Jabs DA, Read RW, et al. Expert panel recommendations for the use of anti-tumor necrosis factor biologic agents in patients with ocular inflammatory disorders. Ophthalmology. 2014;121(3):785–96 e3.PubMedGoogle Scholar
  21. 21.
    Guignard S, Gossec L, Salliot C, et al. Efficacy of tumour necrosis factor blockers in reducing uveitis flares in patients with spondylarthropathy: a retrospective study. Ann Rheum Dis. 2006;65(12):1631–4.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Wendling D, Prati C. Paradoxical effects of anti-TNF-alpha agents in inflammatory diseases. Expert Rev Clin Immunol. 2014;10(1):159–69.PubMedGoogle Scholar
  23. 23.
    Fabiani C, Vitale A, Lopalco G, et al. Different roles of TNF inhibitors in acute anterior uveitis associated with ankylosing spondylitis: state of the art. Clin Rheumatol. 2016;35(11):2631–8.PubMedGoogle Scholar
  24. 24.
    Braun J, Davis J, Dougados M, et al. First update of the international ASAS consensus statement for the use of anti-TNF agents in patients with ankylosing spondylitis. Ann Rheum Dis. 2006;65(3):316–20.PubMedGoogle Scholar
  25. 25.
    Rudwaleit M, Rodevand E, Holck P, et al. Adalimumab effectively reduces the rate of anterior uveitis flares in patients with active ankylosing spondylitis: results of a prospective open-label study. Ann Rheum Dis. 2009;68(5):696–701.PubMedGoogle Scholar
  26. 26.
    Ma S, Rogers SL, Hall AJ, et al. Sarcoidosis related uveitis: clinical presentations, disease course and rates of systemic disease progression after uveitis diagnosis. Am J Ophthalmol. 2019;198:30–6.PubMedGoogle Scholar
  27. 27.
    Mochizuki M, Smith JR, Takase H for the International Workshop on Ocular Sarcoidosis Study Group, et al. Revised criteria of International Workshop on Ocular Sarcoidosis (IWOS) for the diagnosis of ocular sarcoidosis. Br J Ophthalmol. 2019;103:1418–22.PubMedGoogle Scholar
  28. 28.
    Gundlach E, Hoffmann MM, Prasse A, et al. Interleukin-2 receptor and angiotensin-converting enzyme as markers for ocular sarcoidosis. PLoS One. 2016;11(1):e0147258.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Sahin O, Ziaei A, Karaismailoglu E, et al. The serum angiotensin converting enzyme and lysozyme levels in patients with ocular involvement of autoimmune and infectious diseases. BMC Ophthalmol. 2016;16:19.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Acharya NR, Browne EN, Rao N, et al. Distinguishing features of ocular sarcoidosis in an international cohort of uveitis patients. Ophthalmology. 2018;125(1):119–26.PubMedGoogle Scholar
  31. 31.
    Niederer RL, Al-Janabi A, Lightman SL, et al. Serum angiotensin-converting enzyme has a high negative predictive value in the investigation for systemic sarcoidosis. Am J Ophthalmol. 2018;194:82–7.PubMedGoogle Scholar
  32. 32.
    Rodriguez GE, Shin BC, Abernathy RS, et al. Serum angiotensin-converting enzyme activity in normal children and in those with sarcoidosis. J Pediatr. 1981;99(1):68–72.PubMedGoogle Scholar
  33. 33.
    Matsou A, Tsaousis KT. Management of chronic ocular sarcoidosis: challenges and solutions. Clin Ophthalmol. 2018;12:519–32.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Rothova A. Ocular involvement in sarcoidosis. Br J Ophthalmol. 2000;84(1):110–6.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Niederer RL, Sharief L, Bar A, et al. Predictors of long-term visual outcome in intermediate uveitis. Ophthalmology. 2017;124(3):393–8.PubMedGoogle Scholar
  36. 36.
    Lee SY, Lee HG, Kim DS, et al. Ocular sarcoidosis in a Korean population. J Korean Med Sci. 2009;24(3):413–9.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Miserocchi E, Modorati G, Di Matteo F, et al. Visual outcome in ocular sarcoidosis: retrospective evaluation of risk factors. Eur J Ophthalmol. 2011;21(6):802–10.PubMedGoogle Scholar
  38. 38.
    Kaneko F, Togashi A, Saito S, et al. Behcet’s disease (Adamantiades-Behcet’s disease). Clin Dev Immunol. 2011;2011:681956.PubMedGoogle Scholar
  39. 39.
    Zouboulis CC. Epidemiology of Adamantiades-Behcet’s disease. Ann Med Interne (Paris). 1999;150(6):488–98.Google Scholar
  40. 40.
    Hatemi G, Yazici Y, Yazici H. Behcet’s syndrome. Rheum Dis Clin North Am. 2013;39(2):245–61.PubMedGoogle Scholar
  41. 41.
    Fabiani C, Alio JL. Local (topical and intraocular) therapy for ocular Adamantiades-Behcet’s disease. Curr Opin Ophthalmol. 2015;26(6):546–52.PubMedGoogle Scholar
  42. 42.
    Figus M, Posarelli C, Albert TG, et al. A clinical picture of the visual outcome in Adamantiades-Behcet’s disease. Biomed Res Int. 2015;2015:120519.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Arayssi T, Hamdan A. New insights into the pathogenesis and therapy of Behcet’s disease. Curr Opin Pharmacol. 2004;4(2):183–8.PubMedGoogle Scholar
  44. 44.
    Zamecki KJ, Jabs DA. HLA typing in uveitis: use and misuse. Am J Ophthalmol. 2010;149(2):189–93 e2.PubMedGoogle Scholar
  45. 45.
    International Team for the Revision of the International Criteria for Behcet's D. The International Criteria for Behcet’s Disease (ICBD): a collaborative study of 27 countries on the sensitivity and specificity of the new criteria. J Eur Acad Dermatol Venereol. 2014;28(3):338–47.Google Scholar
  46. 46.
    Blake T, Pickup L, Carruthers D, et al. Birmingham Behcet's service: classification of disease and application of the 2014 International Criteria for Behcet’s disease (ICBD) to a UK cohort. BMC Musculoskelet Disord. 2017;18(1):101.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Amer R, Alsughayyar W, Almeida D. Pattern and causes of visual loss in Behcet’s uveitis: short-term and long-term outcomes. Graefes Arch Clin Exp Ophthalmol. 2017;255(7):1423–32.PubMedGoogle Scholar
  48. 48.
    Cunningham ET Jr, Tugal-Tutkun I, Khairallah M, et al. Behcet uveitis. Ocul Immunol Inflamm. 2017;25(1):2–6.PubMedGoogle Scholar
  49. 49.
    Keino H, Okada AA, Watanabe T, et al. Efficacy of infliximab for early remission induction in refractory uveoretinitis associated with Behcet disease: a 2-year follow-up study. Ocul Immunol Inflamm. 2017;25(1):46–51.PubMedGoogle Scholar
  50. 50.
    Martin-Varillas JL, Calvo-Rio V, Beltran E, et al. Successful optimization of adalimumab therapy in refractory uveitis due to Behcet’s disease. Ophthalmology. 2018;125(9):1444–51.PubMedGoogle Scholar
  51. 51.
    Fabiani C, Vitale A, Emmi G, et al. Efficacy and safety of adalimumab in Behcet’s disease-related uveitis: a multicenter retrospective observational study. Clin Rheumatol. 2017;36(1):183–9.PubMedGoogle Scholar
  52. 52.
    Lightman S, Taylor SR, Bunce C, et al. Pegylated interferon-alpha-2b reduces corticosteroid requirement in patients with Behcet’s disease with upregulation of circulating regulatory T cells and reduction of Th17. Ann Rheum Dis. 2015;74(6):1138–44.PubMedGoogle Scholar
  53. 53.
    Diwo E, Gueudry J, Saadoun D, et al. Long-term efficacy of interferon in severe uveitis associated with Behcet disease. Ocul Immunol Inflamm. 2017;25(1):76–84.PubMedGoogle Scholar
  54. 54.
    Hasanreisoglu M, Cubuk MO, Ozdek S, et al. Interferon alpha-2a therapy in patients with refractory Behcet uveitis. Ocul Immunol Inflamm. 2017;25(1):71–5.PubMedGoogle Scholar
  55. 55.
    Tomkins-Netzer O, Talat L, Ismetova F, et al. Immunomodulatory therapy in uveitis. Dev Ophthalmol. 2016;55:265–75.PubMedGoogle Scholar
  56. 56.
    Suhler EB, Thorne JE, Mittal M, et al. Corticosteroid-related adverse events systematically increase with corticosteroid dose in noninfectious intermediate, posterior, or panuveitis: post hoc analyses from the VISUAL-1 and VISUAL-2 trials. Ophthalmology. 2017;124(12):1799–807.PubMedGoogle Scholar
  57. 57.
    Rathinam SR, Babu M, Thundikandy R, et al. A randomized clinical trial comparing methotrexate and mycophenolate mofetil for noninfectious uveitis. Ophthalmology. 2014;121(10):1863–70.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Weinstein JE, Pepple KL. Cytokines in uveitis. Curr Opin Ophthalmol. 2018;29(3):267–74.PubMedGoogle Scholar
  59. 59.
    Taylor SR, Singh J, Menezo V, et al. Behcet disease: visual prognosis and factors influencing the development of visual loss. Am J Ophthalmol. 2011;152:1059–66.PubMedGoogle Scholar
  60. 60.
    Jaffe GJ, Dick AD, Brezin AP, et al. Adalimumab in patients with active noninfectious uveitis. N Engl J Med. 2016;375(10):932–43.PubMedGoogle Scholar
  61. 61.
    Nguyen QD, Merrill PT, Jaffe GJ, et al. Adalimumab for prevention of uveitic flare in patients with inactive non-infectious uveitis controlled by corticosteroids (VISUAL II): a multicentre, double-masked, randomised, placebo-controlled phase 3 trial. Lancet. 2016;388(10050):1183–92.PubMedGoogle Scholar
  62. 62.
    Suhler EB, Adan A, Brezin AP, et al. Safety and efficacy of adalimumab in patients with noninfectious uveitis in an ongoing open-label study: VISUAL III. Ophthalmology. 2018;125(7):1075–87.PubMedGoogle Scholar
  63. 63.
    Ramanan AV, Dick AD, Jones AP, et al. Adalimumab plus methotrexate for uveitis in juvenile idiopathic arthritis. N Engl J Med. 2017;376(17):1637–46.PubMedGoogle Scholar
  64. 64.
    Vallet H, Seve P, Biard L, et al. Infliximab versus adalimumab in the treatment of refractory inflammatory uveitis: a Multicenter Study from the French Uveitis Network. Arthritis Rheumatol. 2016;68(6):1522–30.PubMedGoogle Scholar
  65. 65.
    Deitch I, Amer R, Tomkins-Netzer O, et al. The effect of anti-tumor necrosis factor alpha agents on the outcome in pediatric uveitis of diverse etiologies. Graefes Arch Clin Exp Ophthalmol. 2018;256(4):801–8.PubMedGoogle Scholar
  66. 66.
    Fabiani C, Vitale A, Rigante D, et al. Comparative efficacy between adalimumab and infliximab in the treatment of non-infectious intermediate uveitis, posterior uveitis, and panuveitis: a retrospective observational study of 107 patients. Clin Rheumatol. 2019;38:407–15.PubMedGoogle Scholar
  67. 67.
    Sepah YJ, Sadiq MA, Chu DS, et al. Primary (month-6) outcomes of the STOP-uveitis study: evaluating the safety, tolerability, and efficacy of tocilizumab in patients with noninfectious uveitis. Am J Ophthalmol. 2017;183:71–80.PubMedGoogle Scholar
  68. 68.
    Tappeiner C, Mesquida M, Adan A, et al. Evidence for tocilizumab as a treatment option in refractory uveitis associated with juvenile idiopathic arthritis. J Rheumatol. 2016;43(12):2183–8.PubMedGoogle Scholar
  69. 69.
    Atienza-Mateo B, Calvo-Rio V, Beltran E, et al. Anti-interleukin 6 receptor tocilizumab in refractory uveitis associated with Behcet’s disease: multicentre retrospective study. Rheumatology (Oxford). 2018;57(5):856–64.Google Scholar
  70. 70.
    Calvo-Rio V, de la Hera D, Beltran-Catalan E, et al. Tocilizumab in uveitis refractory to other biologic drugs: a study of 3 cases and a literature review. Clin Exp Rheumatol. 2014;32(4 Suppl 84):S54–7.PubMedGoogle Scholar
  71. 71.
    Heissigerova J, Callanan D, de Smet MD, et al. Efficacy and safety of sarilumab for noninfectious uveitis of posterior segment: outcomes from the phase 2 SATURN trial. Ophthalmology. 2019;126:428–37.PubMedGoogle Scholar
  72. 72.
    Dick AD, Tugal-Tutkun I, Foster S, et al. Secukinumab in the treatment of noninfectious uveitis: results of three randomized, controlled clinical trials. Ophthalmology. 2013;120(4):777–87.PubMedGoogle Scholar
  73. 73.
    Letko E, Yeh S, Foster CS, et al. Efficacy and safety of intravenous secukinumab in noninfectious uveitis requiring steroid-sparing immunosuppressive therapy. Ophthalmology. 2015;122(5):939–48.PubMedGoogle Scholar
  74. 74.
    Sharief LAT, Lightman S, Tomkins-Netzer O. Using local therapy to control noninfectious uveitis. Ophthalmology. 2018;125(3):329–31.PubMedGoogle Scholar
  75. 75.
    Tomkins-Netzer O, Lightman S, Drye L, et al. Outcome of treatment of uveitic macular edema: the multicenter uveitis steroid treatment trial 2-year results. Ophthalmology. 2015;122(11):2351–9.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Kok H, Lau C, Maycock N, et al. Outcome of intravitreal triamcinolone in uveitis. Ophthalmology. 2005;112(11):1916 e1–7.Google Scholar
  77. 77.
    Sallam A, Taylor SR, Habot-Wilner Z, et al. Repeat intravitreal triamcinolone acetonide injections in uveitic macular oedema. Acta Ophthalmol. 2012;90:e323–5.PubMedGoogle Scholar
  78. 78.
    Lowder C, Belfort R Jr, Lightman S, et al. Dexamethasone intravitreal implant for noninfectious intermediate or posterior uveitis. Arch Ophthalmol. 2011;129(5):545–53.PubMedGoogle Scholar
  79. 79.
    Writing Committee for the Multicenter Uveitis Steroid Treatment T, Follow-up Study Research G, Kempen JH, et al. Association between long-lasting intravitreous fluocinolone acetonide implant vs systemic anti-inflammatory therapy and visual acuity at 7 years among patients with intermediate, posterior, or panuveitis. JAMA. 2017;317(19):1993–2005.Google Scholar
  80. 80.
    Kempen JH, Altaweel MM, Holbrook JT, et al. Randomized comparison of systemic anti-inflammatory therapy versus fluocinolone acetonide implant for intermediate, posterior, and panuveitis: the multicenter uveitis steroid treatment trial. Ophthalmology. 2011;118(10):1916–26.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Sen HN, Abreu FM, Louis TA, et al. Cataract surgery outcomes in uveitis: the multicenter uveitis steroid treatment trial. Ophthalmology. 2016;123(1):183–90.PubMedGoogle Scholar
  82. 82.
    Jaffe GJ, Foster S, Pavesio C, et al. Effect of an injectable fluocinolone acetonide insert on recurrence rates in noninfectious uveitis affecting the posterior segment: 12-month results. Ophthalmology. 2019;126:601–10.PubMedGoogle Scholar
  83. 83.
    Multicenter Uveitis Steroid Treatment Trial Research Group, Thorne JE, et al. Periocular triamcinolone vs. intravitreal triamcinolone vs. intravitreal dexamethasone implant for the treatment of uveitic macular edema: the periocular vs. intravitreal corticosteroids for uveitic macular edema (POINT) trial. Ophthalmology. 2019;126:283–95.Google Scholar
  84. 84.
    Taylor A, Sheng KC, Herrero LJ, et al. Methotrexate treatment causes early onset of disease in a mouse model of Ross River virus-induced inflammatory disease through increased monocyte production. PLoS One. 2013;8(8):e71146.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Julian K, Langner-Wegscheider BJ, Haas A, et al. Intravitreal methotrexate in the management of presumed tuberculous serpiginous-like choroiditis. Retina. 2013;33(9):1943–8.PubMedGoogle Scholar
  86. 86.
    Nguyen QD, Merrill PT, Clark WL, et al. Intravitreal sirolimus for noninfectious uveitis: a phase III Sirolimus Study Assessing Double-masKed Uveitis TReAtment (SAKURA). Ophthalmology. 2016;123(11):2413–23.PubMedGoogle Scholar
  87. 87.
    Shanmuganathan VA, Casely EM, Raj D, et al. The efficacy of sirolimus in the treatment of patients with refractory uveitis. Br J Ophthalmol. 2005;89(6):666–9.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Nguyen QD, Sadiq MA, Soliman MK, et al. The effect of different dosing schedules of intravitreal Sirolimus, a mammalian target of rapamycin (mTOR) inhibitor, in the treatment of non-infectious uveitis (An American Ophthalmological Society Thesis). Trans Am Ophthalmol Soc. 2016;114:T3.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, Bevacizumab, or Ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology. 2016;123(6):1351–9.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Ho M, Liu DT, Lam DS, Jonas JB. Retinal vein occlusions, from basics to the latest treatment. Retina. 2016;36(3):432–48.PubMedGoogle Scholar
  91. 91.
    Staurenghi G, Lai TYY, Mitchell P, et al. Efficacy and safety of Ranibizumab 0.5 mg for the treatment of macular edema resulting from uncommon causes: twelve-month findings from PROMETHEUS. Ophthalmology. 2018;125(6):850–62.PubMedGoogle Scholar
  92. 92.
    Lasave AF, Zeballos DG, El-Haig WM, et al. Short-term results of a single intravitreal bevacizumab (avastin) injection versus a single intravitreal triamcinolone acetonide (kenacort) injection for the management of refractory noninfectious uveitic cystoid macular edema. Ocular immunology and inflammation. 2009;17:423–30.PubMedGoogle Scholar
  93. 93.
    Kharel Sitaula R, Janani MK, Madhavan HN, et al. Outcome of polymerase chain reaction (PCR) analysis in 100 suspected cases of infectious uveitis. J Ophthalmic Inflamm Infect. 2018;8(1):2.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Majumder PD, Sudharshan S, Biswas J. Laboratory support in the diagnosis of uveitis. Indian J Ophthalmol. 2013;61(6):269–76.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Sandhu HS, Hajrasouliha A, Kaplan HJ, et al. Diagnostic utility of quantitative polymerase chain reaction versus culture in endophthalmitis and uveitis. Ocul Immunol Inflamm. 2019;27:578–82.PubMedGoogle Scholar
  96. 96.
    Thompson PP, Kowalski RP. A 13-year retrospective review of polymerase chain reaction testing for infectious agents from ocular samples. Ophthalmology. 2011;118(7):1449–53.PubMedGoogle Scholar
  97. 97.
    Bispo PJM, Davoudi S, Sahm ML, et al. Rapid detection and identification of uveitis pathogens by qualitative multiplex real-time PCR. Invest Ophthalmol Vis Sci. 2018;59(1):582–9.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Schoenberger SD, Kim SJ, Thorne JE, et al. Diagnosis and treatment of acute retinal necrosis: a report by the American Academy of Ophthalmology. Ophthalmology. 2017;124(3):382–92.PubMedGoogle Scholar
  99. 99.
    Hong BK, Lee CS, Van Gelder RN, Garg SJ. Emerging techniques for pathogen discovery in endophthalmitis. Curr Opin Ophthalmol. 2015;26(3):221–5.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Sugita S, Shimizu N, Watanabe K, et al. Use of multiplex PCR and real-time PCR to detect human herpes virus genome in ocular fluids of patients with uveitis. Br J Ophthalmol. 2008;92(7):928–32.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Neumann R, Barequet D, Rosenblatt A, et al. Herpetic anterior uveitis—analysis of presumed and pcr proven cases. Ocul Immunol Inflamm. 2019;27:211–8.PubMedGoogle Scholar
  102. 102.
    Butler NJ, Moradi A, Salek SS, et al. Acute retinal necrosis: presenting characteristics and clinical outcomes in a cohort of polymerase chain reaction-positive patients. Am J Ophthalmol. 2017;179:179–89.PubMedGoogle Scholar
  103. 103.
    Liu T, Jain A, Fung M, et al. Valacyclovir as initial treatment for acute retinal necrosis: a pharmacokinetic modeling and simulation study. Curr Eye Res. 2017;42(7):1035–8.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Sims JL, Yeoh J, Stawell RJ. Acute retinal necrosis: a case series with clinical features and treatment outcomes. Clin Exp Ophthalmol. 2009;37(5):473–7.PubMedGoogle Scholar
  105. 105.
    Lau CH, Missotten T, Salzmann J, et al. Acute retinal necrosis features, management, and outcomes. Ophthalmology. 2007;114(4):756–62.PubMedGoogle Scholar
  106. 106.
    Baltinas J, Lightman S, Tomkins-Netzer O. Comparing treatment of acute retinal necrosis with either oral valacyclovir or intravenous acyclovir. Am J Ophthalmol. 2018;188:173–80.PubMedGoogle Scholar
  107. 107.
    Tibbetts MD, Shah CP, Young LH, et al. Treatment of acute retinal necrosis. Ophthalmology. 2010;117(4):818–24.PubMedGoogle Scholar
  108. 108.
    Yeh S, Suhler EB, Smith JR, et al. Combination systemic and intravitreal antiviral therapy in the management of acute retinal necrosis syndrome. Ophthalmic Surg Lasers Imaging Retina. 2014;45(5):399–407.PubMedGoogle Scholar
  109. 109.
    Wong R, Pavesio CE, Laidlaw DA, et al. Acute retinal necrosis: the effects of intravitreal foscarnet and virus type on outcome. Ophthalmology. 2010;117(3):556–60.PubMedGoogle Scholar
  110. 110.
    WHO Global Tuberculosis Report. 2015. World Health Organization; 2015.Google Scholar
  111. 111.
    Dyrhol-Riise AM, Gran G, Wentzel-Larsen T, et al. Diagnosis and follow-up of treatment of latent tuberculosis; the utility of the QuantiFERON-TB Gold In-tube assay in outpatients from a tuberculosis low-endemic country. BMC Infect Dis. 2010;10:57.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Nazari Khanamiri H, Rao NA. Serpiginous choroiditis and infectious multifocal serpiginoid choroiditis. Surv Ophthalmol. 2013;58(3):203–32.PubMedGoogle Scholar
  113. 113.
    Agrawal R, Gunasekeran DV, Agarwal A, et al. The Collaborative Ocular Tuberculosis Study (COTS)-1: a multinational description of the spectrum of choroidal involvement in 245 patients with tubercular uveitis. Ocul Immunol Inflamm. 2019;29:1–11.Google Scholar
  114. 114.
    La Distia Nora R, van Velthoven ME, Ten Dam-van Loon NH, et al. Clinical manifestations of patients with intraocular inflammation and positive QuantiFERON-TB gold in-tube test in a country nonendemic for tuberculosis. Am J Ophthalmol. 2014;157(4):754–61.PubMedGoogle Scholar
  115. 115.
    Bansal R, Gupta A, Gupta V, et al. Role of anti-tubercular therapy in uveitis with latent/manifest tuberculosis. Am J Ophthalmol. 2008;146(5):772–9.PubMedGoogle Scholar
  116. 116.
    Ang M, Hedayatfar A, Wong W, et al. Duration of anti-tubercular therapy in uveitis associated with latent tuberculosis: a case-control study. Br J Ophthalmol. 2012;96(3):332–6.PubMedGoogle Scholar
  117. 117.
    Sanghvi C, Bell C, Woodhead M, et al. Presumed tuberculous uveitis: diagnosis, management, and outcome. Eye (Lond). 2011;25(4):475–80.Google Scholar
  118. 118.
    Tomkins-Netzer O, Leong BCS, Zhang X, et al. Effect of antituberculous therapy on uveitis associated with latent tuberculosis. Am J Ophthalmol. 2018;190:164–70.PubMedGoogle Scholar
  119. 119.
    Liu Q, Wang ZD, Huang SY, et al. Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasit Vectors. 2015;8:292.Google Scholar
  120. 120.
    Villard O, Cimon B, L'Ollivier C, et al. Serological diagnosis of Toxoplasma gondii infection: recommendations from the French National Reference Center for Toxoplasmosis. Diagn Microbiol Infect Dis. 2016;84(1):22–33.Google Scholar
  121. 121.
    Bosch-Driessen LE, Berendschot TT, Ongkosuwito JV, et al. Ocular toxoplasmosis: clinical features and prognosis of 154 patients. Ophthalmology. 2002;109(5):869–78.PubMedGoogle Scholar
  122. 122.
    Jasper S, Vedula SS, John SS, et al. Corticosteroids as adjuvant therapy for ocular toxoplasmosis. Cochrane Database Syst Rev. 2017;(1):CD007417.Google Scholar
  123. 123.
    Zhang Y, Lin X, Lu F. Current treatment of ocular toxoplasmosis in immunocompetent patients: a network meta-analysis. Acta Trop. 2018;185:52–62.PubMedGoogle Scholar
  124. 124.
    Bosch-Driessen LH, Verbraak FD, Suttorp-Schulten MS, et al. A prospective, randomized trial of pyrimethamine and azithromycin vs pyrimethamine and sulfadiazine for the treatment of ocular toxoplasmosis. Am J Ophthalmol. 2002;134(1):34–40.PubMedGoogle Scholar
  125. 125.
    Kim SJ, Scott IU, Brown GC, et al. Interventions for toxoplasma retinochoroiditis: a report by the American Academy of Ophthalmology. Ophthalmology. 2013;120(2):371–8.PubMedGoogle Scholar
  126. 126.
    Silveira C, Belfort R Jr, Muccioli C, et al. The effect of long-term intermittent trimethoprim/sulfamethoxazole treatment on recurrences of toxoplasmic retinochoroiditis. Am J Ophthalmol. 2002;134(1):41–6.PubMedGoogle Scholar
  127. 127.
    Pradhan E, Bhandari S, Gilbert RE, et al. Antibiotics versus no treatment for toxoplasma retinochoroiditis. Cochrane Database Syst Rev. 2016;(5):CD002218.Google Scholar
  128. 128.
    Borkowski PK, Brydak-Godowska J, Basiak W, et al. The impact of short-term, intensive antifolate treatment (with pyrimethamine and sulfadoxine) and antibiotics followed by long-term, secondary antifolate prophylaxis on the rate of toxoplasmic retinochoroiditis recurrence. PLoS Negl Trop Dis. 2016;10(8):e0004892.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Felix JP, Lira RP, Zacchia RS, et al. Trimethoprim-sulfamethoxazole versus placebo to reduce the risk of recurrences of Toxoplasma gondii retinochoroiditis: randomized controlled clinical trial. Am J Ophthalmol. 2014;157(4):762–6 e1.PubMedGoogle Scholar
  130. 130.
    Fernandes Felix JP, Cavalcanti Lira RP, Cosimo AB, et al. Trimethoprim-sulfamethoxazole versus placebo in reducing the risk of toxoplasmic retinochoroiditis recurrences: a three-year follow-up. Am J Ophthalmol. 2016;170:176–82.PubMedGoogle Scholar
  131. 131.
    Reich M, Mackensen F. Ocular toxoplasmosis: background and evidence for an antibiotic prophylaxis. Curr Opin Ophthalmol. 2015;26(6):498–505.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Xia Ni Wu
    • 1
  • Lazha Ahmed Talat Sharief
    • 1
  • Roy Schwartz
    • 1
  • Þóra Elísabet Jónsdóttir
    • 1
  • Anastasia Tasiopoulou
    • 1
  • Ahmed Al-Janabi
    • 1
  • Noura Al Qassimi
    • 1
  • Amgad Mahmoud
    • 1
  • Sue Lightman
    • 1
  • Oren Tomkins-Netzer
    • 1
    • 2
    Email author
  1. 1.Institute of Ophthalmology, University College London, Moorfields Eye HospitalLondonUK
  2. 2.Technion, Institute of Technology, Bnai Zion Medical CenterHaifaIsrael

Personalised recommendations