Recent Developments in Cornea and Corneal Transplants

  • Caterina Sarnicola
  • Enrica Sarnicola
  • Paolo Perri
  • Vincenzo Sarnicola


In the last years there have been many developments regarding corneal diseases and treatments.

In this chapter we will discuss some of the most important achievements in this field.

A novel therapy for neurotrophic keratopathy has been recently developed. Moreover, newer strategies have been outlined to identify and treat infectious keratitis. The diagnosis and management of dry eye has also evolved. However, the most revolutionary change was probably in corneal transplantation. Nowadays in most cases it is no longer necessary to perform a penetrating keratoplasty (PK) but it is possible to replace the diseased corneal layer only, performing a lamellar transplant.


Neurotrophic keratopathy Corneal infections Dry eye disease Corneal transplant DALK DMEK DSAEK Rho kinase inhibitor Limbal stem cell deficiency Ocular surface transplantation 


  1. 1.
    Dua HS, Said DG, Messmer EM, Rolando M, Benitez-Del-Castillo JM, Hossain PN, et al. Neurotrophic keratopathy. Prog Retin Eye Res. 2018;66:107–31.PubMedGoogle Scholar
  2. 2.
    Bonini S, Lambiase A, Rama P, Sinigaglia F, Allegretti M, Chao W, et al. Phase II randomized, double-masked, vehicle-controlled trial of recombinant human nerve growth factor for neurotrophic keratitis. Ophthalmology. 2018;125(9):1332–43.PubMedGoogle Scholar
  3. 3.
    Vaddavalli PK, Garg P, Sharma S, Sangwan VS, Rao GN, Thomas R. Role of confocal microscopy in the diagnosis of fungal and acanthamoeba keratitis. Ophthalmology. 2011;118(1):29–35.PubMedGoogle Scholar
  4. 4.
    Inoue T, Ohashi Y. Utility of real-time PCR analysis for appropriate diagnosis for keratitis. Cornea. 2013;32(Suppl 1):S71–6.PubMedGoogle Scholar
  5. 5.
    Eguchi H, Hotta F, Kuwahara T, Imaohji H, Miyazaki C, Hirose M, et al. Diagnostic approach to ocular infections using various techniques from conventional culture to next-generation sequencing analysis. Cornea. 2017;36(Suppl 1):S46–52.PubMedGoogle Scholar
  6. 6.
    Spoerl E, Wollensak G, Seiler T. Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res. 2004;29(1):35–40.PubMedGoogle Scholar
  7. 7.
    Price MO, Price FW. Corneal cross-linking in the treatment of corneal ulcers. Curr Opin Ophthalmol. 2016;27(3):250–5.PubMedGoogle Scholar
  8. 8.
    Austin A, Lietman T, Rose-Nussbaumer J. Update on the management of Infectious keratitis. Ophthalmology. 2017;124(11):1678–89.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Richoz O, Gatzioufas Z, Francois P, Schrenzel J, Hafezi F. Impact of fluorescein on the antimicrobial efficacy of photoactivated riboflavin in corneal collagen cross-linking. J Refract Surg. 2013;29(12):842–5.PubMedGoogle Scholar
  10. 10.
    Grzybowski A, Kanclerz P, Myers WG. The use of povidone-iodine in ophthalmology. Curr Opin Ophthalmol. 2018;29(1):19–32.PubMedGoogle Scholar
  11. 11.
    Hsu J, Gerstenblith AT, Garg SJ, Vander JF. Conjunctival flora antibiotic resistance patterns after serial intravitreal injections without postinjection topical antibiotics. Am J Ophthalmol. 2014;157(3):514–8.e1.PubMedGoogle Scholar
  12. 12.
    Isenberg SJ, Apt L, Valenton M, Sharma S, Garg P, Thomas PA, et al. Prospective, randomized clinical trial of povidone-iodine 1.25% solution versus topical antibiotics for treatment of bacterial keratitis. Am J Ophthalmol. 2017;176:244–53.PubMedGoogle Scholar
  13. 13.
    Yamasaki K, Saito F, Ota R, Kilvington S. Antimicrobial efficacy of a novel povidone iodine contact lens disinfection system. Cont Lens Anterior Eye. 2018;41(3):277–81.PubMedGoogle Scholar
  14. 14.
    Cho P, Reyes S, Boost MV. Microbiocidal characterization of a novel povidone-iodine based rigid contact lens disinfecting solution. Cont Lens Anterior Eye. 2018;41(6):542–6.PubMedGoogle Scholar
  15. 15.
    Abidi A, Shukla P, Ahmad A. Lifitegrast: a novel drug for treatment of dry eye disease. J Pharmacol Pharmacother. 2016;7(4):194–8.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Chan CC, Prokopich CL. Lifitegrast ophthalmic solution 5.0% for treatment of dry eye disease: overview of clinical trial program. J Pharm Pharm Sci. 2019;22(1):49–56.PubMedGoogle Scholar
  17. 17.
    Cohn GS, Corbett D, Tenen A, Coroneo M, McAlister J, Craig JP, et al. Randomized, controlled, double-masked, multicenter, pilot study evaluating safety and efficacy of intranasal neurostimulation for dry eye disease. Invest Ophthalmol Vis Sci. 2019;60(1):147–53.PubMedGoogle Scholar
  18. 18.
    Arenas E, Esquenazi S, Anwar M, Terry M. Lamellar corneal transplantation. Surv Ophthalmol. 2012;57(6):510–29.PubMedGoogle Scholar
  19. 19.
    McAllum PJ, Segev F, Herzig S, Rootman DS. Deep anterior lamellar keratoplasty for post-LASIK ectasia. Cornea. 2007;26(4):507–11.PubMedGoogle Scholar
  20. 20.
    Ramamurthi S, Cornish KS, Steeples L, Ramaesh K. Deep anterior lamellar keratoplasty on a previously failed full-thickness graft. Cornea. 2009;28(4):456–7.PubMedGoogle Scholar
  21. 21.
    Lake D, Hamada S, Khan S, Daya SM. Deep anterior lamellar keratoplasty over penetrating keratoplasty for host rim thinning and ectasia. Cornea. 2009;28(5):489–92.PubMedGoogle Scholar
  22. 22.
    Singh G, Singh Bhinder H. Evaluation of therapeutic deep anterior lamellar keratoplasty in acute ocular chemical burns. Eur J Ophthalmol. 2008;18(4):517–28.PubMedGoogle Scholar
  23. 23.
    Fogla R, Padmanabhan P. Deep anterior lamellar keratoplasty combined with autologous limbal stem cell transplantation in unilateral severe chemical injury. Cornea. 2005;24(4):421–5.PubMedGoogle Scholar
  24. 24.
    Luengo-Gimeno F, Tan DT, Mehta JS. Evolution of deep anterior lamellar keratoplasty (DALK). Ocul Surf. 2011;9(2):98–110.PubMedGoogle Scholar
  25. 25.
    Bhatt PR, Lim LT, Ramaesh K. Therapeutic deep lamellar keratoplasty for corneal perforations. Eye (Lond). 2007;21(9):1168–73.Google Scholar
  26. 26.
    Sarnicola E, Sarnicola C, Sabatino F, Tosi GM, Perri P, Sarnicola V. Early deep anterior lamellar keratoplasty (DALK) for Acanthamoeba keratitis poorly responsive to medical treatment. Cornea. 2016;35(1):1–5.PubMedGoogle Scholar
  27. 27.
    Sabatino F, Sarnicola E, Sarnicola C, Tosi GM, Perri P, Sarnicola V, et al. Early deep anterior lamellar keratoplasty for fungal keratitis poorly responsive to medical treatment. Eye (Lond). 2017;31:1639–46.Google Scholar
  28. 28.
    Anwar M, Teichmann KD. Big-bubble technique to bare Descemet’s membrane in anterior lamellar keratoplasty. J Cataract Refract Surg. 2002;28(3):398–403.PubMedGoogle Scholar
  29. 29.
    Sarnicola E, Sarnicola C, Sabatino F, Tosi GM, Perri P, Sarnicola V. Cannula DALK versus needle DALK for keratoconus. Cornea. 2016;35(12):1508–11.PubMedGoogle Scholar
  30. 30.
    Sarnicola V, Toro P. Blunt cannula for descemetic deep anterior lamellar keratoplasty. Cornea. 2011;30(8):895–8.PubMedGoogle Scholar
  31. 31.
    Fournié P, Malecaze F, Coullet J, Arné JL. Variant of the big bubble technique in deep anterior lamellar keratoplasty. J Cataract Refract Surg. 2007;33(3):371–5.PubMedGoogle Scholar
  32. 32.
    Muftuoglu O, Toro P, Hogan RN, Bowman RW, Cavanagh HD, McCulley JP, et al. Sarnicola air-visco bubble technique in deep anterior lamellar keratoplasty. Cornea. 2013;32(4):527–32.PubMedGoogle Scholar
  33. 33.
    Feizi S, Javadi MA, Jamali H, Mirbabaee F. Deep anterior lamellar keratoplasty in patients with keratoconus: big-bubble technique. Cornea. 2010;29(2):177–82.PubMedGoogle Scholar
  34. 34.
    Sarnicola V, Toro P, Sarnicola C, Sarnicola E, Ruggiero A. Long-term graft survival in deep anterior lamellar keratoplasty. Cornea. 2012;31(6):621–6.PubMedGoogle Scholar
  35. 35.
    Holland EJ, Mannis MJ. Cornea. 4th ed. Amsterdam: Elsevier; 2016.Google Scholar
  36. 36.
    Deng SX, Lee WB, Hammersmith KM, Kuo AN, Li JY, Shen JF, et al. Descemet membrane endothelial keratoplasty: safety and outcomes: a report by the American Academy of Ophthalmology. Ophthalmology. 2018;125(2):295–310.PubMedGoogle Scholar
  37. 37.
    Gorovoy MS. Descemet-stripping automated endothelial keratoplasty. Cornea. 2006;25(8):886–9.PubMedGoogle Scholar
  38. 38.
    Melles GR, Wijdh RH, Nieuwendaal CP. A technique to excise the descemet membrane from a recipient cornea (descemetorhexis). Cornea. 2004;23(3):286–8.PubMedGoogle Scholar
  39. 39.
    Busin M, Albé E. Does thickness matter: ultrathin Descemet stripping automated endothelial keratoplasty. Curr Opin Ophthalmol. 2014;25(4):312–8.PubMedGoogle Scholar
  40. 40.
    Cheung AY, Hou JH, Bedard P, Grimes V, Buckman N, Eslani M, et al. Technique for preparing ultrathin and nanothin descemet stripping automated endothelial keratoplasty tissue. Cornea. 2018;37(5):661–6.PubMedGoogle Scholar
  41. 41.
    Sarnicola V, Millacci C, Sarnicola E, Sarnicola C, Sabatino F, Ruggiero A. Suture pull-through insertion of graft donor in Descemet stripping automated endothelial keratoplasty: results of 4-year follow-up. Taiwan J Ophthalmol. 2015;5(3):114–9.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Price FW, Feng MT, Price MO. Evolution of endothelial keratoplasty: where are we headed? Cornea. 2015;34(Suppl 10):S41–7.PubMedGoogle Scholar
  43. 43.
    Melles GR, Lander F, Rietveld FJ. Transplantation of Descemet’s membrane carrying viable endothelium through a small scleral incision. Cornea. 2002;21(4):415–8.PubMedGoogle Scholar
  44. 44.
    Dapena I, Moutsouris K, Droutsas K, Ham L, van Dijk K, Melles GR. Standardized “no-touch” technique for descemet membrane endothelial keratoplasty. Arch Ophthalmol. 2011;129(1):88–94.PubMedGoogle Scholar
  45. 45.
    Veldman PB, Dye PK, Holiman JD, Mayko ZM, Sáles CS, Straiko MD, et al. The S-stamp in Descemet membrane endothelial keratoplasty safely eliminates upside-down graft implantation. Ophthalmology. 2016;123(1):161–4.PubMedGoogle Scholar
  46. 46.
    Sarnicola C, Sabatino F, Sarnicola E, Perri P, Cheung AY, Sarnicola V. Cannula-assisted technique to unfold grafts in descemet membrane endothelial keratoplasty. Cornea. 2019;38(3):275–9.PubMedGoogle Scholar
  47. 47.
    Yoeruek E, Bayyoud T, Hofmann J, Bartz-Schmidt KU. Novel maneuver facilitating Descemet membrane unfolding in the anterior chamber. Cornea. 2013;32(3):370–3.PubMedGoogle Scholar
  48. 48.
    Liarakos VS, Dapena I, Ham L, van Dijk K, Melles GR. Intraocular graft unfolding techniques in descemet membrane endothelial keratoplasty. JAMA Ophthalmol. 2013;131(1):29–35.PubMedGoogle Scholar
  49. 49.
    Melles GR, Ong TS, Ververs B, van der Wees J. Descemet membrane endothelial keratoplasty (DMEK). Cornea. 2006;25(8):987–90.PubMedGoogle Scholar
  50. 50.
    Okumura N, Kinoshita S, Koizumi N. The role of Rho kinase inhibitors in corneal endothelial dysfunction. Curr Pharm Des. 2017;23:660–6.PubMedGoogle Scholar
  51. 51.
    Okumura N, Fujii K, Kagami T, Makiko N, Kitahara M, Kinoshita S, et al. Activation of the Rho/Rho kinase signaling pathway is involved in cell death of corneal endothelium. Invest Ophthalmol Vis Sci. 2016;57(15):6843–51.PubMedGoogle Scholar
  52. 52.
    Okumura N, Koizumi N, Ueno M, Sakamoto Y, Takahashi H, Tsuchiya H, et al. ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue. Am J Pathol. 2012;181(1):268–77.PubMedGoogle Scholar
  53. 53.
    Okumura N, Okazaki Y, Inoue R, Kakutani K, Nakano S, Kinoshita S, et al. Effect of the Rho-associated kinase inhibitor eye drop (Ripasudil) on corneal endothelial wound healing. Invest Ophthalmol Vis Sci. 2016;57(3):1284–92.PubMedGoogle Scholar
  54. 54.
    Kinoshita S, Koizumi N, Ueno M, Okumura N, Imai K, Tanaka H, et al. Injection of cultured cells with a ROCK inhibitor for bullous keratopathy. N Engl J Med. 2018;378(11):995–1003.PubMedGoogle Scholar
  55. 55.
    Sarnicola C, Farooq AV, Colby K. Fuchs endothelial corneal dystrophy: update on pathogenesis and future directions. Eye Contact Lens. 2019;45(1):1–10.PubMedGoogle Scholar
  56. 56.
    Borboli S, Colby K. Mechanisms of disease: Fuchs’ endothelial dystrophy. Ophthalmol Clin N Am. 2002;15(1):17–25.Google Scholar
  57. 57.
    Moloney G, Petsoglou C, Ball M, Kerdraon Y, Höllhumer R, Spiteri N, et al. Descemetorhexis without grafting for Fuchs endothelial dystrophy-supplementation with topical Ripasudil. Cornea. 2017;36(6):642–8.PubMedGoogle Scholar
  58. 58.
    Macsai MS, Shiloach M. Use of topical Rho kinase inhibitors in the treatment of Fuchs dystrophy after descemet stripping only. Cornea. 2019;38(5):529–34.PubMedGoogle Scholar
  59. 59.
    Liang L, Sheha H, Li J, Tseng SC. Limbal stem cell transplantation: new progresses and challenges. Eye (Lond). 2009;23(10):1946–53.Google Scholar
  60. 60.
    Atallah MR, Palioura S, Perez VL, Amescua G. Limbal stem cell transplantation: current perspectives. Clin Ophthalmol. 2016;10:593–602.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Kenyon KR, Tseng SC. Limbal autograft transplantation for ocular surface disorders. Ophthalmology. 1989;96(5):709–22; discussion 22-3.PubMedGoogle Scholar
  62. 62.
    Cheung AY, Sarnicola E, Holland EJ. Long-term ocular surface stability in conjunctival limbal autograft donor eyes. Cornea. 2017;36(9):1031–5.PubMedGoogle Scholar
  63. 63.
    Sangwan VS, Basu S, MacNeil S, Balasubramanian D. Simple limbal epithelial transplantation (SLET): a novel surgical technique for the treatment of unilateral limbal stem cell deficiency. Br J Ophthalmol. 2012;96(7):931–4.PubMedGoogle Scholar
  64. 64.
    Amescua G, Atallah M, Nikpoor N, Galor A, Perez VL. Modified simple limbal epithelial transplantation using cryopreserved amniotic membrane for unilateral limbal stem cell deficiency. Am J Ophthalmol. 2014;158(3):469–75.e2.PubMedGoogle Scholar
  65. 65.
    Croasdale CR, Schwartz GS, Malling JV, Holland EJ. Keratolimbal allograft: recommendations for tissue procurement and preparation by eye banks, and standard surgical technique. Cornea. 1999;18(1):52–8.PubMedGoogle Scholar
  66. 66.
    Biber JM, Skeens HM, Neff KD, Holland EJ. The cincinnati procedure: technique and outcomes of combined living-related conjunctival limbal allografts and keratolimbal allografts in severe ocular surface failure. Cornea. 2011;30(7):765–71.PubMedGoogle Scholar
  67. 67.
    Tsai RJ, Li LM, Chen JK. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med. 2000;343(2):86–93.PubMedGoogle Scholar
  68. 68.
    Satake Y, Higa K, Tsubota K, Shimazaki J. Long-term outcome of cultivated oral mucosal epithelial sheet transplantation in treatment of total limbal stem cell deficiency. Ophthalmology. 2011;118(8):1524–30.PubMedGoogle Scholar
  69. 69.
    Sejpal K, Yu F, Aldave AJ. The Boston keratoprosthesis in the management of corneal limbal stem cell deficiency. Cornea. 2011;30(11):1187–94.PubMedGoogle Scholar
  70. 70.
    Pujari S, Siddique SS, Dohlman CH, Chodosh J. The Boston keratoprosthesis type II: the Massachusetts Eye and Ear Infirmary experience. Cornea. 2011;30(12):1298–303.PubMedGoogle Scholar
  71. 71.
    StrampellI B. Osteo-odontokeratoprosthesis. Ann Ottalmol Clin Ocul. 1963;89:1039–44.PubMedGoogle Scholar
  72. 72.
    Michael R, Charoenrook V, de la Paz MF, Hitzl W, Temprano J, Barraquer RI. Long-term functional and anatomical results of osteo- and osteoodonto-keratoprosthesis. Graefes Arch Clin Exp Ophthalmol. 2008;246(8):1133–7.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Caterina Sarnicola
    • 1
    • 2
  • Enrica Sarnicola
    • 1
    • 2
  • Paolo Perri
    • 3
  • Vincenzo Sarnicola
    • 1
  1. 1.Clinica degli Occhi SarnicolaGrossetoItaly
  2. 2.Ophthalmology Department IIOspedale San Giovanni Bosco and Ospedale OftalmicoTurinItaly
  3. 3.Department of Biomedical and Specialty Surgical SciencesUniversity of FerraraFerraraItaly

Personalised recommendations