Advertisement

Dry Eye Disease: A Modern History

  • Michael A. Lemp
  • Gary N. Foulks
Chapter

Abstract

One of the most common disorders of the ocular surface is dry eye disease (DED). A historical perspective of our understanding of DED can be captured in seven thematic areas. Structure and function of the components of the tear film and ocular surface and the lacrimal functional unit provide the basic information. The hallmarks of DED are tear instability and hyperosmolarity. The role of inflammation in DED and the neurobiological aspects of the ocular surface are important to understanding the vicious cycle of the disease. Recent advances in the diagnosis and treatment of DED provide novel appreciation of DED.

Keywords

Dry eye disease Lacrimal functional unit Tear instability Tear hyperosmolarity Ocular surface inflammation Aqueous tear deficiency Evaporative tear deficiency 

References

  1. 1.
    de Roetth A. The dry eye. Acta XVI Concilium Ophthalmologicum (Britannia). Br Med Assoc London. 1950;1:456–64.Google Scholar
  2. 2.
    Thoft RA, Friend J. Biochemical transformation or regenerating ocular surface epithelium. Invest Oph Vis Sci. 1977;16:14–20.Google Scholar
  3. 3.
    Thoft RA, Friend J. The X, Y, Z hypothesis of corneal epithelial aintenance. Invest Ophthalmol Vis Sci. 1983;24:1442–3.PubMedGoogle Scholar
  4. 4.
    Shapiro MS, Friend J, Thoft RA. Corneal re-epithelialization from the conjunctiva. Invest Ophthalmol Vis Sci. 1981;21(1 Pt 1):135–42.PubMedGoogle Scholar
  5. 5.
    Kinoshita S, Kiorpes TC, Friend J, Thoft RA. Limbal epithelium in ocular surface wound healing. Invest Ophthalmol Vis Sci. 1982;24:1442–3.Google Scholar
  6. 6.
    Schirmer A, Galvn S, Sun TT. Differentiation-related expression of a major 64k corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986;103:49–62.CrossRefGoogle Scholar
  7. 7.
    Pellegrini G, De Luca M. Eyes on the prize: limbal stem cells and corneal restoration. Cell Stem Cell. 2014;15:121.PubMedCrossRefGoogle Scholar
  8. 8.
    Gipson IK, Hori Y, Argüeso P. Character of ocular surface mucins and their alteration in dry eye disease. Ocul Surf. 2004;2:131–48.PubMedCrossRefGoogle Scholar
  9. 9.
    Methodologies to diagnose and monitor dry eye disease: report of the diagnostic methodology subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5:108–52.Google Scholar
  10. 10.
    Bron AJ, Argüeso P, Irkec M, Bright FV. Clinical staining of the ocular surface: Mechanism and interpretations. Prog Retin Eye Res. 2015;44:36–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Stern ME, Beuerman RW, Fox RI, Gao J, Mircheff AK, Pflugfelder SC. The pathology of dry eye: the interaction between the ocular surface and lacrimal glands. Cornea. 1998;17:584–9. ReviewPubMedCrossRefGoogle Scholar
  12. 12.
    Pflugfelder SC, de Paiva CS. The pathophysiology of dry eye disease: what we know and future directions for research. Ophthalmol. 2017;124(11S):S4–S13.CrossRefGoogle Scholar
  13. 13.
    Arita R, Morishige N, Shirakawa R, Kawashima M, Sakimoto T, Suzuki T, Tsubota K. Increased tear fluid production as a compensatory response to meibomian gland loss: a multi-center cross-sectional study. Ophthalmol. 2015;122:925–33.CrossRefGoogle Scholar
  14. 14.
    Godfrey KJ, Wilsen C, Satterfield K, Korn BS, Kikkawa DO. Analysis of spontaneous eyelidblink dynamics using a 240 frames per second smartphone camera. Ophthalmic Plast Reconstr Surg. 2019.  https://doi.org/10.1097/IOP.00000000000001356. [Epub ahead of print]
  15. 15.
    Deinema LA, Vingrys AJ, Chinnery HR, Downie LE. Optical coherence tomography reveals changes to corneal reflectivity and thickess in individuals with tear hyperosmolarity. Transl Vis Sci Technol. 2017;6:6.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Gilbard JP, Farris RL, Santamaria J 2nd. Osmolarity of tear microvolumes in keratoconjunctivitis sicca. Arch Ophthalmol. 1978;96:677–81.PubMedCrossRefGoogle Scholar
  17. 17.
    Farris RL. Tear osmolarity-a new gold standard? Adv Exp Med Biol. 1994;350:495–503.PubMedCrossRefGoogle Scholar
  18. 18.
    Tomlinson A, McCann LC, Pearce EI. Comparison of human tear film osmolarity measured by electrical impedance and freezing point depression techniques. Cornea. 2010;29(9):1036–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Liu H, Begley C, Chen M, Bradley A, Bonanno J, McNamara NA, Nelson JD, Simpson T. A link between tear instability and hyperosmolarity in dry eye. Invest Ophthalmol Vis Sci. 2009;50:3671–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Igarashi T, Fujimoto C, Suzuki H, Ono M, Iijima O, Takahashi H, Takahashi H. Short-time exposure of hyperosmolarity triggers interleukin-6 expression in corneal epithelial cells. Cornea. 2014;33:1342–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Gilbard JP, Carter JB, Sang DN, Refojo MF, Hanninen LA, Kenyon KR. Morphologic effect of hyperosmolarity on rabbit corneal epithelium. Ophthalmol. 1984;91:1205–12.CrossRefGoogle Scholar
  22. 22.
    Lemp MA, Bron AJ, Baudouin C, et al. Tear osmolarity in the diagnosis and management of dry eye disease. Am J Ophthalmol. 2011;151:792–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Sullivan BD, Whitmer D, Nichols KK, et al. An objective approach to dry eye disease severity. Invest Ophthalmol Vis Sci. 2010;51:6125–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Sullivan BD. Challenges in using signs and symptoms to evaluate new biomarkers of dry eye disease. Ocul Surf. 2014;12:2–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Sullivan BD, Crews LA, Sonmez B, et al. Clinical utility of objective tests for dry eye disease: variability over time and implications for clinical trials and disease management. Cornea. 2012;31:1000–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Khanal S, Millar TJ. Barriers to clinical uptake of tear osmolarity meaurements. Br J Ophthalmol. 2012;96:341–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Potvin R, Makar S, Rapuano CJ. Tear film osmolarity and dry eye disease: a review of the literature. Clin Ophthalmol. 2015;(9):2039–47.Google Scholar
  28. 28.
    Viso E, Rodriguez-Ares MT, Abelenda D, et al. Prevalence of asymptomatic and symptomatic meibomian gland dysfunction in the general population of Spain. Invest Ophthalmol Vis Sci. 2012;53:2601–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Lemp MA, Crews LA, Bron AJ, Foulks GN, Sullivan BD. Distribution of aqueous-deficient and evaporative dry eye in a clinic-based patient cohort: a retrospective study. Cornea. 2012;31:472–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Sjogren HSC. Zur kenntnis der keratoconjunctivitis sicca (Keratitis filiformis bei Hypofuncktion der Tranendreusen). Acta Ophthalmol (Kbh). 1933;(Supp2):1–151.Google Scholar
  31. 31.
    Lemp MA. Report of the National Eye Institute/Industry Workshop on clinical trials in dry eye. CLAO J. 1995;21:221–32.PubMedGoogle Scholar
  32. 32.
    Luo L, Li DQ, Doshi A, Farley W, Corrales RM, Pflugfelder SC. Experimental dry eye stimulates production of inflammatory cytokines and MMP-9 and activates MAPK signaling pathways on the ocular surface. Invest Ophthalmol Vis Sci. 2004;45:4293–301.PubMedCrossRefGoogle Scholar
  33. 33.
    Pflugfelder SC, de Paiva CS, Li D-Q, Stern ME. Epithelial–immune cell interaction in dry eye. Cornea. 2008;27:S9–11. (1-7).PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S, et al. TFOS DEWS II pathophysiology report. Ocul Surf. 2017;15:438–510.PubMedCrossRefGoogle Scholar
  35. 35.
    Stevenson WG, Chauhan SK, Dana R. Dry eye disease: an immune-mediated ocular surface disorder. Arch Ophthalmol. 2012;130:90–100.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Rosette C, Karin M. Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science. 1996;274:1194–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Stern ME, Schaumburg CS, Pflugfelder SC. Dry eye as a mucosal autoimmune disease. Int Rev Immunol. 2013;32:19–41.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kaufman HE. The practical detection of mmp-9 diagnoses ocular surface disease and may help prevent its complications. Cornea. 2013;32:211–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Belmonte C, Nichols JJ, Cox SM, Brock JA, Begley CG, Bereiter DA, Dartt DA, Galor A, Hamrah P, Ivanusic JJ, Jacobs DS, McNamara NA, Rosenblatt MI, Stapleton F, Wolffsohn JS. TFOS DEWS II pain and sensation report. Ocul Surf. 2017;15:404–37.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    IASP. The International Association for the Study of Pain: https://www.iasp-pain.org.
  41. 41.
    Quallo T, Vastani N, Horridge E, Gentry C, Parra A, Moss S, et al. TRPM8 is a neuronal osmosensor that regulates eye blinking in mice. Nat Commun. 2015;6:7150.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Benowitz LI, Popovich PG. Inflammation and axon regeneration. Curr Opin Neurol. 2011;24:577–83.PubMedCrossRefGoogle Scholar
  43. 43.
    Nichols KK, Nichols JJ, Mitchell GL. The lack of association between signs and symptoms in patients with dry eye disease. Cornea. 2004;23:762–70.PubMedCrossRefGoogle Scholar
  44. 44.
    De Paiva CS, Pflugfelder SC. Corneal epitheliopathy of dry eye induces hyperesthesia to mechanical air jet stimulation. Am J Ophthalmol. 2004;137:109–15.PubMedCrossRefGoogle Scholar
  45. 45.
    Xu KP, Yagi Y, Tsubota K. Decrease in corneal sensitivity and change in tear function in dry eye. Cornea. 1996;15:235–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Versura P, Frigato M, Cellini M, Mulè R, Malavolta N, Campos EC. Diagnostic performance of tear function tests in Sjogren’s syndrome patients. Eye (Lond). 2007;21:229–37.PubMedCrossRefGoogle Scholar
  47. 47.
    Geber C, Baumg€artner U, Schwab R, Müller H, Stoeter P, Dieterich M, et al. Revised definition of neuropathic pain and its grading system: an open case series illustrating its use in clinical practice. Am J Med. 2009;122(10 Suppl):S3–12.PubMedCrossRefGoogle Scholar
  48. 48.
    Wolffsohn JS, Arita R, Chalmers R, Djalilian A, Dogru M, Dumbleton K, et al. TFOS DEWS II diagnostic methodology report. Ocul Surf. 2017;15:539–74.PubMedCrossRefGoogle Scholar
  49. 49.
    Qazi Y, Hurwitz S, Khan S, Jurkunas UV, Dana R, Hamrah P. Validity and reliability of a novel ocular pain assessment survey (OPAS) in quantifying and monitoring corneal and ocular surface pain. Ophthalmology. 2016;123:1458–68.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Stave J, Zinser G, Grummer G, Guthoff R. Modified Heidelberg Retinal Tomograph HRT. Initial results of in vivo presentation of corneal structures. Ophthalmologe. 2002;99:276–80.PubMedCrossRefGoogle Scholar
  51. 51.
    Kheirkhah A, Dohlman TH, Amparo F, Arnoldner MA, Jamali A, Hamrah P, et al. Effects of corneal nerve density on the response to treatment in dry eye disease. Ophthalmology. 2015;122:662–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Lambiase A, Micera A, Sacchetti M, Cortes M, Mantelli F, Bonini S. Alterations of tear neuromediators in dry eye disease. Arch Ophthalmol. 2011;129:981–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Baudouin C. A new approach for better comprehension of diseases of the ocular surface. J Fr Ophtalmol. 2007;30:239–46.PubMedCrossRefGoogle Scholar
  54. 54.
    Baudouin C, Messmer EM, Aragona P, Geerling G, Labetoulle M. Revisiting the vicious circle of dry eye disease: a focus on the pathophysiology of meibomian gland dysfunction. Br J Ophthalmol. 2016.Google Scholar
  55. 55.
    The definition and classification of dry eye disease: report of the definition and classification subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007;5:75–92.Google Scholar
  56. 56.
    Shikari H, Antin JH, Dana R. Ocular graft-versus-host disease: a review. Surv Ophthalmol. 2013;58:233–51.PubMedCrossRefGoogle Scholar
  57. 57.
    Geerling G, Tauber J, Baudouin C, Goto E, Matsumoto Y, O’Brien T, et al. The international workshop on meibomian gland dysfunction: report of the subcommittee on management and treatment of meibomian gland dysfunction. Invest Ophthalmol Vis Sci. 2011;52:2050–64.CrossRefGoogle Scholar
  58. 58.
    Schiffman RM, Christianson MD, Jacobsen G, Hirsch JD, Reis BL. Reliability and validity of the ocular surface disease index. Arch Ophthalmol. 2000;118:615–21.PubMedCrossRefGoogle Scholar
  59. 59.
    Chalmers RL, Begley CG, Caffery B. Validation of the 5-Item Dry Eye Ques- tionnaire (DEQ-5): discrimination across self-assessed severity and aqueous tear deficient dry eye diagnoses. Cont Lens Anterior Eye. 2010;33:55–60.PubMedCrossRefGoogle Scholar
  60. 60.
    Sullivan BD, Whitmer D, Nichols KK, Tomlinson A, Foulks GN, Geerling G, Khanal S, Ramaesh K, Diaper C, McFadyen A. Tear film osmolarity: determination of a referent for dry eye diagnosis. Invest Ophthalmol Vis Sci. 2010;47:4309–15.Google Scholar
  61. 61.
    de Monchy I, Gendron G, Miceli C, Pogorzalek N, Mariette X, Labetoulle M. Combination of the Schirmer I and phenol red thread tests as a rescue strategy for diagnosis of ocular dryness associated with Sjogren’s syndrome. Invest Ophthalmol Vis Sci. 2011;52:5167–73.Google Scholar
  62. 62.
    Center for Drug Evaluation and Research, approval 021023 (Oct 10, 2003).Google Scholar
  63. 63.
    Center for Drug Evaluation and Research, approval 208073 (July 12, 2017).Google Scholar
  64. 64.
    Perry HD, Solomon R, Donnenfeld ED, Perry AR, Wittpenn JR, Greenman HE, Savage HE. Evaluation of topical cyclosporine for the treatment of dry eye disease. Arch Ophthalmol. 2008;126:1046–50.PubMedCrossRefGoogle Scholar
  65. 65.
    Personal communication, Kim Brazzell, PhD, Kala Pharmaceuticals, 2018.Google Scholar
  66. 66.
    Lambiase A, Sullivan BD, Schmidt TA, Sullivan DA, Jay GD, Truitt ER 3rd, Bruscolini A, Sacchetti M, Mantelli F. A two-week, randomized, double-masked study to evaluate safety and efficacy of Lubricin(150 μg/mL) eye drops versus sodium hyaluronate (HA) 0.18% eye drops (Vismed®) in patients with moderate dry eye disease. Ocul Surf. 2017;15:77–87.PubMedCrossRefGoogle Scholar
  67. 67.
    Karnatia R, Laurieb DE, Laurie GW. Lacritin and the tear proteome as natural replacement therapy for dry eye. Exp Eye Res. 2013;117:39–52.CrossRefGoogle Scholar
  68. 68.
    Lane SS, DuBiner HB, Epstein RJ, et al. A new system, the LipiFlow, for the treatment of meibomian gland dysfunction. Cornea. 2012;31:396–404.PubMedCrossRefGoogle Scholar
  69. 69.
    Friedman NJ, Butron K, Robledo N, Loudin J, Baba SN, Chayet A. A nonrandomized, open-label study to evaluate the effect of nasal stimulation on tear production in subjects with dry eye disease. Clin Ophthalmol. 2016;10:795–804.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Gumus K, Schuetzle KL, Stephen C, Pflugfelder SC. Randomized, controlled, crossover trial comparing the impact of sham or intranasal neurostimulation on conjunctival goblet cell degranulation. Am J Ophthalmol. 2017;177:159–68.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Michael A. Lemp
    • 1
  • Gary N. Foulks
    • 2
  1. 1.Georgetown University, Department of OphthalmologyLake WalesUSA
  2. 2.University of Louisville School of Medicine, Department of Ophthalmology and Vision ScienceWilmingtonUSA

Personalised recommendations