Advertisement

Random Walk Exploration for Swarm Mapping

  • Miquel KegeleirsEmail author
  • David Garzón RamosEmail author
  • Mauro BirattariEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11650)

Abstract

Research in swarm robotics has shown that robot swarms are effective in the exploration of unknown environments. However, little work has been devoted to port the exploration capabilities of robot swarms into the context of mapping. Indeed, conceiving robot swarms that can map an unknown environment in a robust, scalable, and flexible way is an open issue. In this paper, we investigate a swarm mapping method in which robots first individually map the environment by random walk and then, we merge their maps into a single, global one. We focus on five variants of random walk and we compare the quality of the maps that a swarm produces when exploring the environment using these variants. Our experiments with ten e-puck robots show that, despite the individual maps being incomplete by themselves, it is possible to collectively map the environment by merging them. We found that the quality of the map depends on the exploration behavior of the individuals. Our results suggest that one of the variants of random walk, the ballistic motion, gives better mapping results for closed environments.

Keywords

Swarm mapping Exploration Random walk 

Notes

Acknowledgements

The project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 681872). Mauro Birattari acknowledges support from the Belgian Fonds de la Recherche Scientifique – FNRS. David Garzón Ramos acknowledges support from the Colombian Administrative Department of Science, Technology and Innovation – COLCIENCIAS.

References

  1. 1.
    Barca, J.C., Sekercioglu, Y.A.: Swarm robotics reviewed. Robotica 31(3), 345–359 (2013)CrossRefGoogle Scholar
  2. 2.
    Borenstein, J., Koren, Y.: Real-time obstacle avoidance for fast mobile robots. IEEE Trans. Syst. Man Cybern. 19(5), 1179–1187 (1989)CrossRefGoogle Scholar
  3. 3.
    Dimidov, C., Oriolo, G., Trianni, V.: Random walks in swarm robotics: an experiment with kilobots. In: Dorigo, M., et al. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 185–196. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44427-7_16CrossRefGoogle Scholar
  4. 4.
    Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463 (2014)CrossRefGoogle Scholar
  5. 5.
    Dorigo, M., et al.: a novel concept for the study of heterogeneous robotic swarms. IEEE Robot. Autom. Mag. 20(4), 60–71 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Feynman, R.P., Leighton, R.B., Sands, M.L.: The Feynman Lectures on Physics Volume 1: Mainly Mechanics, Radiation, and Heat. Basic Books, New York (2011)zbMATHGoogle Scholar
  7. 7.
    Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, D., Stewart, B.: Distributed multirobot exploration and mapping. Proc. IEEE 94(7), 1325–1339 (2006)CrossRefGoogle Scholar
  8. 8.
    Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe: a novel approach to the automatic design of control software for robot swarms. Swarm Intell. 8(2), 89–112 (2014)CrossRefGoogle Scholar
  9. 9.
    Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Rob. Auton. Syst. 61(12), 1258–1276 (2013)CrossRefGoogle Scholar
  10. 10.
    Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., Birattari, M.: Software infrastructure for e-puck (and TAM). Technical report. TR/IRIDIA/2015-004, IRIDIA, Université libre de Bruxelles, Belgium (2015)Google Scholar
  11. 11.
    Grisetti, G., Stachniss, C., Burgard, W.: Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. pp. 2432–2437. IEEE Press (2005)Google Scholar
  12. 12.
    Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Rob. 23(1), 34–46 (2007)CrossRefGoogle Scholar
  13. 13.
    Hörner, J.: Map-merging for multi-robot system. Master’s thesis, Univerzita Karlova (2016)Google Scholar
  14. 14.
    Kegeleirs, M., Garzón Ramos, D., Birattari, M.: Random walk exploration for swarm mapping: supplementary material (2019). http://iridia.ulb.ac.be/supp/IridiaSupp2019-003/index.html
  15. 15.
    Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In: Gonçalves, P., Torres, P., Alves, C. (eds.) Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions. Instituto Politécnico de Castelo Branco, pp. 59–65, Portugal (2009)Google Scholar
  16. 16.
    Pasternak, Z., Bartumeus, F., Grasso, F.W.: Lévy-taxis: a novel search strategy for finding odor plumes in turbulent flow-dominated environments. J. Phys. A Math. Theoret. 42(43), 434010 (2009)CrossRefGoogle Scholar
  17. 17.
    Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012)CrossRefGoogle Scholar
  18. 18.
    Portugal, D., Rocha, R.: A survey on multi-robot patrolling algorithms. In: Camarinha-Matos, L.M. (ed.) DoCEIS 2011. IAICT, vol. 349, pp. 139–146. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19170-1_15CrossRefGoogle Scholar
  19. 19.
    Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software. vol. 3, p. 5. IEEE Press (2009)Google Scholar
  20. 20.
    Ramachandran, R.K.: Exploration, mapping and scalar field estimation using a swarm of resource-constrained robots. Ph.D. thesis, Arizona State University (2018)Google Scholar
  21. 21.
    Renshaw, E., Henderson, R.: The correlated random walk. J. Appl. Probab. 18(02), 403–414 (1981)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Rone, W., Ben-Tzvi, P.: Mapping, localization and motion planning in mobile multi-robotic systems. Robotica 31(1), 1–23 (2013)CrossRefGoogle Scholar
  23. 23.
    Saeedi, S., Trentini, M., Seto, M., Li, H.: Multiple-robot simultaneous localization and mapping: a review. J. Field Rob. 33(1), 3–46 (2016)CrossRefGoogle Scholar
  24. 24.
    Schroeder, A., Ramakrishnan, S., Kumar, M., Trease, B.: Efficient spatial coverage by a robot swarm based on an ant foraging model and the lévy distribution. Swarm Intell. 11(1), 39–69 (2017)CrossRefGoogle Scholar
  25. 25.
    Zaburdaev, V., Denisov, S., Klafter, J.: Lévy walks. Rev. Mod. Phys. 87(2), 483–530 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IRIDIAUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations