A Vision-Based Assistance Key Differenciator for Helicopters Automonous Scalable Missions

  • Rémi GirardEmail author
  • Sébastien Mavromatis
  • Jean Sequeira
  • Nicolas Belanger
  • Guillaume Anoufa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11650)


In the coming years, incremental automation will be the main challenge in the development of highly versatile helicopter technologies. To support this effort, vision-based systems are becoming a mandatory technological foundation for helicopter avionics. Among the different advantages that computer vision can provide for flight assistance, navigation in a GPS-denied environment is an important focus for Airbus because it is relevant for various types of missions. The present position paper introduces the different available SLAM algorithms, along with their limitations and advantages, for addressing vision-based navigation problems for helicopters. The reasons why Visual SLAM is of interest for our application are detailed. For an embedded application for helicopters, it is necessary to robustify the VSLAM algorithm with a special focus on the data model to be exchanged with the autopilot. Finally, we discuss future decisional architecture principles from the perspective of making vision-based navigation the 4th contributing agent in a wider distributed intelligence system composed of the autopilot, the flight management system and the crew.


Visual SLAM Vision-based navigation Helicopters Autonomous Pose estimation 3D reconstruction 


  1. 1.
    Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): part II. IEEE Robot. Autom. Mag. 13(3), 108–117 (2006). Scholar
  2. 2.
    Bayard, D.S., et al.: Vision-based navigation for the NASA mars helicopter. In: AIAA Scitech 2019 Forum. American Institute of Aeronautics and Astronautics (2019).
  3. 3.
    Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016). Scholar
  4. 4.
    Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007). Scholar
  5. 5.
    Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006). Scholar
  6. 6.
    Durrant-Whyte, H.F.: Uncertain geometry in robotics. IEEE J. Robot. Autom. 4(1), 23–31 (1988). Scholar
  7. 7.
    Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40, 611–625 (2018)CrossRefGoogle Scholar
  8. 8.
    Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: European Conference on Computer Vision (ECCV) (2014)CrossRefGoogle Scholar
  9. 9.
    Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual odometry. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 15–22, May 2014.
  10. 10.
    Fraundorfer, F., Scaramuzza, D.: Visual odometry: Part II: Matching, robustness, optimization, and applications. IEEE Robot. Autom. Mag. 19(2), 78–90 (2012). Scholar
  11. 11.
    Galvez-López, D., Tardos, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. 28(5), 1188–1197 (2012). Scholar
  12. 12.
    Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234, November 2007.
  13. 13.
    Konolige, K., Agrawal, M.: Frameslam: from bundle adjustment to real-time visual mapping. IEEE Trans. Robot. 24, 1066–1077 (2008). Scholar
  14. 14.
    Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: Proceedings of the AAAI National Conference on Artificial Intelligence, pp. 593–598. AAAI (2002)Google Scholar
  15. 15.
    Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017). Scholar
  16. 16.
    Mur-Artal, R., Montiel, J., Tardos, J.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31, 1147–1163 (2015). Scholar
  17. 17.
    Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, CVPR 2004, vol. 1, pp. I-652–I-659, June 2004.
  18. 18.
    Scaramuzza, D., Fraundorfer, F.: Tutorial: visual odometry. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011). Scholar
  19. 19.
    Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial relationships in robotics. In: 1987 IEEE International Conference on Robotics and Automation Proceedings, vol. 4, p. 850, March 1987.
  20. 20.
    Smith, R.C., Cheeseman, P.: On the representation and estimation of spatial uncertainly. Int. J. Rob. Res. 5(4), 56–68 (1986). Scholar
  21. 21.
    Strasdat, H., Montiel, J.M.M., Davison, A.J.: Real-time monocular SLAM: Why filter? In: 2010 IEEE International Conference on Robotics and Automation, pp. 2657–2664, May 2010.
  22. 22.
    Strasdat, H., Davison, A.J., Montiel, J.M.M., Konolige, K.: Double window optimisation for constant time visual SLAM. In: Proceedings of the 2011 International Conference on Computer Vision, ICCV 2011, pp. 2352–2359. IEEE Computer Society, Washington (2011).
  23. 23.
    Strasdat, H., Montiel, J.M.M., Davison, A.J.: Scale drift-aware large scale monocular SLAM. In: RSS 2010 (2010).
  24. 24.
    Stumberg, L.v., Usenko, V., Engel, J., Stückler, J., Cremers, D.: From monocular SLAM to autonomous drone exploration. In: 2017 European Conference on Mobile Robots (ECMR). pp. 1–8, September 2017.
  25. 25.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment—a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). Scholar
  26. 26.
    Yang, T., Li, P., Zhang, H., Li, J., Li, Z.: Monocular vision SLAM-based UAV autonomous landing in emergencies and unknown environments. Electronics 7(5), 73 (2018). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rémi Girard
    • 1
    • 2
    Email author
  • Sébastien Mavromatis
    • 1
  • Jean Sequeira
    • 1
  • Nicolas Belanger
    • 2
  • Guillaume Anoufa
    • 3
  1. 1.Aix Marseille University, CNRS, LISMarseilleFrance
  2. 2.AirbusMarignaneFrance
  3. 3.CapgeminiParisFrance

Personalised recommendations