Advertisement

Watchman Routes for Robot Inspection

  • Stefan EdelkampEmail author
  • Zhuowei Yu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11650)

Abstract

Inspection is a hot topic of robotics recently, and there are many different ways to solve the inspection problem. In this paper, we propose a new framework for a robust and efficient inspection of the entire workspace in a watchman route based on automatically generated waypoints. The framework architecture design includes several relevant technologies and refines algorithms such as medial axis transformation, shortest path approximation, and Monte-Carlo search for finding tours. This framework is evaluated in a client-server system: the simulation of the robot is run on Unity, while data processing is executed in a Python server. Experimenting with this approach, the measured inspection coverage of the workspace on random terrains was at least 99.6%.

References

  1. 1.
    Li, F., Klette, R.: An approximate algorithm for solving the watchman route problem. In: Sommer, G., Klette, R. (eds.) RobVis 2008. LNCS, vol. 4931, pp. 189–206. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78157-8_15CrossRefGoogle Scholar
  2. 2.
    Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory Ser. B 18(1), 39–41 (1975)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Edelkamp, S., Secim, B.C., Plaku, E.: Surface inspection via hitting sets and multi-goal motion planning. In: Gao, Y., Fallah, S., Jin, Y., Lekakou, C. (eds.) TAROS 2017. LNCS (LNAI), vol. 10454, pp. 134–149. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-64107-2_12CrossRefGoogle Scholar
  4. 4.
    Edelkamp, S., Gath, M., Cazenave, T., Teytaud, F.: Algorithm and knowledge engineering for the TSPTW problem. In: 2013 IEEE Symposium on Computational Intelligence in Scheduling (CISched), Singapore, pp. 44–51 (2013)Google Scholar
  5. 5.
    Asano, T., Ghosh, S.K., Shermer, T.C.: Visibility in the plane. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 829–876. Elsevier, Amsterdam (2000)CrossRefGoogle Scholar
  6. 6.
    Simple polygon. Math Wiki (2018). http://math.wikia.com/wiki/Simple_polygon. Accessed 07 Jun 2018
  7. 7.
    Polygon. Math.ucdavis.edu (2018). https://www.math.ucdavis.edu/~latte/background/countingLecture/poly/poly/index.php. Accessed 10 Jun 2018
  8. 8.
    Carlsson, S., Jonsson, H., Nilsson, B.: Finding the shortest watchman route in a simple polygon. Discrete Comput. Geom. 22(3), 377–402 (1999).  https://doi.org/10.1007/PL00009467MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Morphology - Skeletonization/Medial Axis Transform (2018). Homepages.inf.ed.ac.uk. https://homepages.inf.ed.ac.uk/rbf/HIPR2/skeleton.htm. Accessed 19 Jun 2018
  10. 10.
    Morphology - Thinning (2018). Homepages.inf.ed.ac.uk. https://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm. Accessed 20 Jun 2018
  11. 11.
    Morphology - Hit-and-Miss Transform (2018). Homepages.inf.ed.ac.uk. https://homepages.inf.ed.ac.uk/rbf/HIPR2/hitmiss.htm. Accessed 22 Jun 2018
  12. 12.
    Morphology - Distance Transform (2018). Homepages.inf.ed.ac.uk. https://homepages.inf.ed.ac.uk/rbf/HIPR2/distance.htm. Accessed 26 Jun 2018
  13. 13.
    FOV using recursive shadowcasting - RogueBasin (2018). Roguebasin.com. http://www.roguebasin.com/index.php?title=FOV_using_recursive_shadowcasting. Accessed 26 Jun 2018
  14. 14.
    Rosin, C.D.: Nested rollout policy adaptation for Monte Carlo tree search. In: International Joint Conference on Artificial Intelligence, Barcelona, Spain, pp. 649–654 (2011)Google Scholar
  15. 15.
    Cazenave, T.: Nested Monte-Carlo search. In: International Joint Conference on Artificial Intelligence, Barcelona, Spain, pp. 456–461 (2009)Google Scholar
  16. 16.
    Flask. Pallets (2018). https://www.palletsprojects.com/p/flask. Accessed 03 Jul 2018
  17. 17.
  18. 18.
  19. 19.
    Scrum Alliance - Learn About Scrum. Scrumalliance.org (2018). https://www.scrumalliance.org/why-scrum. Accessed 20 Apr 2018
  20. 20.
    Akhier/Py-RecursiveShadowCasting. GitHub (2018). https://github.com/Akhier/Py-RecursiveShadowCasting. Accessed 17 Jul 2018
  21. 21.
    SebLague/Procedural-Cave-Generation. GitHub (2018). https://github.com/SebLague/Procedural-Cave-Generation. Accessed 18 Jul 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of InformaticsKing’s College LondonLondonUK

Personalised recommendations