Advertisement

MoDSeM: Towards Semantic Mapping with Distributed Robots

  • Gonçalo S. MartinsEmail author
  • João Filipe Ferreira
  • David Portugal
  • Micael S. Couceiro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11650)

Abstract

This paper presents MoDSeM, a software framework for cooperative perception supporting teams of robots. MoDSeM aims to provide a flexible semantic mapping framework able to represent all spatial information perceived in missions involving teams of robots, and to formalize the development of perception software, promoting the implementation of reusable modules that can fit varied team constitutions. We provide an overview of MoDSeM, and describe how it can be applied to multi-robot systems, discussing several sub-problems such as history and memory, or centralized vs distributed perception. Aiming to demonstrate the functionality of our prototype, preliminary experiments took place in simulation, using a \(100 \times 100 \times 100\) m simulated map to demonstrate its ability to receive, store and retrieve information stored in semantic voxel grids, using ROS as a transport layer and OpenVDB as a grid storage mechanism. Results show the appropriateness of ROS and OpenVDB as a back-end for supporting the prototype, achieving a promising performance in all aspects of the task. Future developments will make use of these results to apply MoDSeM in realistic scenarios, including multi-robot indoor surveillance and precision forestry operations.

Keywords

Artificial Perception Multi-robot systems Cooperative perception Software framework 

References

  1. 1.
    Couceiro, M.S., Portugal, D., Ferreira, J.F., Rocha, R.P.: SEMFIRE: towards a new generation of forestry maintenance multi-robot systems. In: IEEE/SICE International Symposium on System Integration, no. 2 (2019)Google Scholar
  2. 2.
    Ferreira, J.F., Dias, J.: Probabilistic Approaches for Robotic Perception. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-02006-8. https://www.springer.com/us/book/9783319020051CrossRefGoogle Scholar
  3. 3.
    Fitzpatrick, P., Ceseracciu, E., Domenichelli, D.E., Paikan, A., Metta, G., Natale, L.: A middle way for robotics middleware. J. Softw. Eng. Robot. 5, 42–49 (2014)Google Scholar
  4. 4.
    Hellström, T., Ostovar, A., Hellström, T., Ostovar, A.: Detection of trees based on quality guided image segmentation. In: Second International Conference on Robotics and Associated High-Technologies and Equipment for Agriculture and forestry (RHEA 2014): New Trends in Mobile Robotics, Perception and Actuation for Agriculture and Forestry, May 2014Google Scholar
  5. 5.
    Hellström, T., Ringdahl, O.: A software framework for agricultural and forestry robotics. In: International Conference on Robotics and Associated High-technologies and Equipment for Agriculture, pp. 171–176 (2012)Google Scholar
  6. 6.
    Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 34(3), 189–206 (2013).  https://doi.org/10.1007/s10514-012-9321-0CrossRefGoogle Scholar
  7. 7.
    Labbé, M., Michaud, F.: RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. J. Field Robot. (2018).  https://doi.org/10.1002/rob.21831CrossRefGoogle Scholar
  8. 8.
    Lottes, P., Stachniss, C.: Semi-supervised online visual crop and weed classification in precision farming exploiting plant arrangement. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 2017, pp. 5155–5161 (2017).  https://doi.org/10.1109/IROS.2017.8206403
  9. 9.
    Mallet, A., Pasteur, C., Herrb, M., Lemaignan, S., Ingrand, F.: GenoM3: building middleware-independent robotic components. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), May 2014 (2010).  https://doi.org/10.1109/ROBOT.2010.5509539
  10. 10.
    Mankins, J.C.: Technology readiness levels. White Pap. 6(2), 5 (1995).  https://doi.org/10.1080/08956308.2010.11657640CrossRefGoogle Scholar
  11. 11.
    Martins, G.S., Ferreira, J.F., Portugal, D., Couceiro, M.S.: MoDSeM: modular framework for distributed semantic mapping. In: The 2nd UK-RAS Conference for PhD Students and Early-Career Researchers on Embedded Intelligence (2019)Google Scholar
  12. 12.
    Museth, K.: VDB: high-resolution sparse volumes with dynamic topography. ACM Trans. Graph. 32(3), 1–22 (2013).  https://doi.org/10.1145/2487228.2487235. http://dl.acm.org/citation.cfm?id=2487228.2487235CrossRefzbMATHGoogle Scholar
  13. 13.
    Oberti, R., Marchi, M., Tirelli, P., Calcante, A., Iriti, M., Borghese, A.N.: Automatic detection of powdery mildew on grapevine leaves by image analysis: optimal view-angle range to increase the sensitivity. Comput. Electron. Agric. 104, 1–8 (2014).  https://doi.org/10.1016/j.compag.2014.03.001CrossRefGoogle Scholar
  14. 14.
    Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009). http://www.willowgarage.com/papers/ros-open-source-robot-operating-system

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gonçalo S. Martins
    • 1
    Email author
  • João Filipe Ferreira
    • 2
    • 3
  • David Portugal
    • 2
  • Micael S. Couceiro
    • 1
  1. 1.IngeniariusCoimbraPortugal
  2. 2.Institute of Systems and RoboticsUniversity of CoimbraCoimbraPortugal
  3. 3.Computational Neuroscience and Cognitive Robotics Group, School of Science and TechnologyNottingham Trent UniversityNottinghamUK

Personalised recommendations