Preeclampsia and Eclampsia: Nephrologist Perspective

  • Andrea G. Kattah
  • Vesna D. GarovicEmail author


Preeclampsia is a heterogenous, systemic disorder that is caused by maternal and placental factors. Preexisting renal disease and chronic hypertension are significant risk factors for the development of preeclampsia, and the degree of renal insufficiency prior to pregnancy is an important determinant of the risk of maternal complications in pregnancy. While pregnancy itself may accelerate renal decline in some patients, it is not clear whether preeclampsia contributes additional damage. There are currently no clinically used biomarkers that can differentiate preeclampsia from intrinsic renal disease, and an interdisciplinary care approach is the best way to help manage these complex cases. There is evidence that preeclampsia is associated with the future low but increased risk of maternal renal disease. It is still unclear whether it is truly an independent risk factor, but preeclampsia may still identify women early in life who are at future risk of developing renal disease. The optimal long-term follow-up of women with preeclampsia is still not known, but providers should appreciate the significant overlap of renal disease and preeclampsia and have a high index of suspicion in women who do not follow a typical clinical course.


Preeclampsia Eclampsia Nephrology and preeclampsia Pregnancy preeclampsia Chronic kidney disease and preeclampsia 


  1. 1.
    Hypertension in pregnancyReport of the American College of Obstetricians and Gynecologists’ task force on hypertension in pregnancy. Obstet Gynecol. 2013;122(5):1122–31.Google Scholar
  2. 2.
    Maynard SE, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Craici IM, et al. Advances in the pathophysiology of pre-eclampsia and related podocyte injury. Kidney Int. 2014:275–85.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Williams D, Davison J. Chronic kidney disease in pregnancy. BMJ. 2008;336(7637):211–5.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hussain A, Karovitch A, Carson MP. Blood pressure goals and treatment in pregnant patients with chronic kidney disease. Adv Chronic Kidney Dis. 2015;22(2):165–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Karumanchi SA, et al. Preeclampsia: a renal perspective. Kidney Int. 2005;67(6):2101–13.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Sibai BM, et al. Risk factors for preeclampsia, abruptio placentae, and adverse neonatal outcomes among women with chronic hypertension. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. N Engl J Med. 1998;339(10):667–71.PubMedCrossRefGoogle Scholar
  8. 8.
    Duckitt K, Harrington D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ. 2005;330(7491):565.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Lachmeijer AM, et al. Searching for preeclampsia genes: the current position. Eur J Obstet Gynecol Reprod Biol. 2002;105(2):94–113.PubMedCrossRefGoogle Scholar
  10. 10.
    Lie RT, et al. Fetal and maternal contributions to risk of pre-eclampsia: population based study. BMJ. 1998;316(7141):1343–7.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Walker JJ. Pre-eclampsia. Lancet. 2000;356(9237):1260–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Skjaerven R, Wilcox AJ, Lie RT. The interval between pregnancies and the risk of preeclampsia. N Engl J Med. 2002;346(1):33–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Trupin LS, Simon LP, Eskenazi B. Change in paternity: a risk factor for preeclampsia in multiparas. Epidemiology. 1996;7(3):240–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Robertson WB, Brosens I, Dixon HG. The pathological response of the vessels of the placental bed to hypertensive pregnancy. J Pathol Bacteriol. 1967;93(2):581–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science. 2005;308(5728):1592–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Matthys LA, et al. Delayed postpartum preeclampsia: an experience of 151 cases. Am J Obstet Gynecol. 2004;190(5):1464–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Levine RJ, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350(7):672–83.PubMedCrossRefGoogle Scholar
  18. 18.
    Zeisler H, et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med. 2016;374(1):13–22.PubMedCrossRefGoogle Scholar
  19. 19.
    Rana S, et al. Angiogenic factors and the risk of adverse outcomes in women with suspected preeclampsia. Circulation. 2012;125(7):911–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wilson M, et al. Blood pressure, the renin-aldosterone system and sex steroids throughout normal pregnancy. Am J Med. 1980;68(1):97–104.PubMedCrossRefGoogle Scholar
  21. 21.
    Granger JP, et al. Pathophysiology of pregnancy-induced hypertension. Am J Hypertens. 2001;14(6 Pt 2):178S–85S.PubMedCrossRefGoogle Scholar
  22. 22.
    Irani RA, Xia Y. The functional role of the renin-angiotensin system in pregnancy and preeclampsia. Placenta. 2008;29(9):763–71.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Brown MA, Zammit VC, Mitar DM. Extracellular fluid volumes in pregnancy-induced hypertension. J Hypertens. 1992;10(1):61–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Wallukat G, et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest. 1999;103(7):945–52.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Xia Y, et al. Maternal autoantibodies from preeclamptic patients activate angiotensin receptors on human trophoblast cells. J Soc Gynecol Investig. 2003;10(2):82–93.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhou CC, et al. Autoantibody from women with preeclampsia induces soluble Fms-like tyrosine kinase-1 production via angiotensin type 1 receptor and calcineurin/nuclear factor of activated T-cells signaling. Hypertension. 2008;51(4):1010–9.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Zhou CC, et al. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat Med. 2008;14(8):855–62.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Fisher KA, et al. Hypertension in pregnancy: clinical-pathological correlations and remote prognosis. Medicine (Baltimore). 1981;60(4):267–76.CrossRefGoogle Scholar
  29. 29.
    Baylis C. The mechanism of the increase in glomerular filtration rate in the twelve-day pregnant rat. J Physiol. 1980;305:405–14.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Gallery ED, Gyory AZ. Glomerular and proximal renal tubular function in pregnancy-associated hypertension: a prospective study. Eur J Obstet Gynecol Reprod Biol. 1979;9(1):3–12.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Garovic VD, et al. Glomerular expression of nephrin and synaptopodin, but not podocin, is decreased in kidney sections from women with preeclampsia. Nephrol Dial Transplant: Off Publ Eur Dial Transplant Assoc – Eur Renal Assoc. 2007;22(4):1136–43.CrossRefGoogle Scholar
  32. 32.
    Garovic VD, et al. Urinary podocyte excretion as a marker for preeclampsia. Am J Obstet Gynecol. 2007;196(4):320 e1–7.CrossRefGoogle Scholar
  33. 33.
    Craici IM, et al. Podocyturia predates proteinuria and clinical features of preeclampsia: longitudinal prospective study. Hypertension. 2013;61(6):1289–96.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Penning ME, et al. Association of preeclampsia with podocyte turnover. Clin J Am Soc Nephrol. 2014;9(8):1377–85.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    White WM, et al. Persistent urinary podocyte loss following preeclampsia may reflect subclinical renal injury. PLoS One. 2014;9(3):e92693.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Odutayo A, Hladunewich M. Obstetric nephrology: renal hemodynamic and metabolic physiology in Normal pregnancy. Clin J Am Soc Nephrol: CJASN. 2012;Google Scholar
  37. 37.
    Geback C, et al. Obstetrical outcome in women with urinary tract infections in childhood. Acta Obstet Gynecol Scand. 2016;95(4):452–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Hollowell JG. Outcome of pregnancy in women with a history of vesico-ureteric reflux. BJU Int. 2008;102(7):780–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Garg AX, et al. Gestational hypertension and preeclampsia in living kidney donors. N Engl J Med. 2015;372(2):124–33.CrossRefGoogle Scholar
  40. 40.
    Reisaeter AV, et al. Pregnancy and birth after kidney donation: the Norwegian experience. Am J Transplant. 2009;9(4):820–4.CrossRefGoogle Scholar
  41. 41.
    Jones DC, Hayslett JP. Outcome of pregnancy in women with moderate or severe renal insufficiency. N Engl J Med. 1996;335(4):226–32.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Imbasciati E, et al. Pregnancy in CKD stages 3 to 5: fetal and maternal outcomes. Am J Kidney Dis. 2007;49(6):753–62.PubMedCrossRefGoogle Scholar
  43. 43.
    Vikse BE, et al. Previous preeclampsia and risk for progression of biopsy-verified kidney disease to end-stage renal disease. Nephrol Dial Transplant. 2010;25(10):3289–96.PubMedCrossRefGoogle Scholar
  44. 44.
    Nevis IF, et al. Pregnancy outcomes in women with chronic kidney disease: a systematic review. Clin J Am Soc Nephrol: CJASN. 2011;6(11):2587–98.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang JJ, et al. A systematic review and meta-analysis of outcomes of pregnancy in CKD and CKD outcomes in pregnancy. Clin J Am Soc Nephrol: CJASN. 2015;Google Scholar
  46. 46.
    Levine RJ, et al. Trial of calcium to prevent preeclampsia. New Engl J Med. 1997;337(2):69–76.PubMedCrossRefGoogle Scholar
  47. 47.
    Coomarasamy A, et al. Aspirin for prevention of preeclampsia in women with historical risk factors: a systematic review. Obstet Gynecol. 2003;101(6):1319–32.PubMedGoogle Scholar
  48. 48.
    Dekker GA, Sibai BM. Low-dose aspirin in the prevention of preeclampsia and fetal growth retardation: rationale, mechanisms, and clinical trials. Am J Obstet Gynecol. 1993;168(1 Pt 1):214–27.PubMedCrossRefGoogle Scholar
  49. 49.
    Schramm AM, Clowse ME. Aspirin for prevention of preeclampsia in lupus pregnancy. Autoimmune Dis. 2014;2014:920467.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Rolnik D, Wirght D, Poon L, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377:613–22.PubMedCrossRefGoogle Scholar
  51. 51.
    Higby K, et al. Normal values of urinary albumin and total protein excretion during pregnancy. Am J Obstet Gynecol. 1994;171(4):984–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Rhee JS, Young BC, Rana S. Angiogenic factors and renal disease in pregnancy. Case Rep Obstet Gynecol. 2011;2011:281391.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Rolfo A, et al. Chronic kidney disease may be differentially diagnosed from preeclampsia by serum biomarkers. Kidney Int. 2013;83(1):177–81.PubMedCrossRefGoogle Scholar
  54. 54.
    von Dadelszen P, Magee LA. Fall in mean arterial pressure and fetal growth restriction in pregnancy hypertension: an updated metaregression analysis. J Obstet Gynaecol Can. 2002;24(12):941–5.CrossRefGoogle Scholar
  55. 55.
    Cooper WO, et al. Major congenital malformations after first-trimester exposure to ACE inhibitors. N Engl J Med. 2006;354(23):2443–51.PubMedCrossRefGoogle Scholar
  56. 56.
    Kattah AG, Garovic VD. The management of hypertension in pregnancy. Adv Chronic Kidney Dis. 2013;20(3):229–39.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Day C, et al. The role of renal biopsy in women with kidney disease identified in pregnancy. Nephrol Dial Transplant: Off Publ Eur Dial Transpl Assoc – Eur Renal Assoc. 2008;23(1):201–6.CrossRefGoogle Scholar
  58. 58.
    Chen HH, et al. Renal biopsy in pregnancies complicated by undetermined renal disease. Acta Obstet Gynecol Scand. 2001;80(10):888–93.CrossRefGoogle Scholar
  59. 59.
    Vikse BE, et al. Adverse perinatal outcome and later kidney biopsy in the mother. J Am Soc Nephrol. 2006;17(3):837–45.PubMedCrossRefGoogle Scholar
  60. 60.
    Vikse BE, et al. Preeclampsia and the risk of end-stage renal disease. New Engl J Med. 2008;359(8):800–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Murakami S, et al. Renal disease in women with severe preeclampsia or gestational proteinuria. Obstet Gynecol. 2000;96(6):945–9.PubMedGoogle Scholar
  62. 62.
    Fisher KA, et al. Hypertension in pregnancy: clinical-pathological correlations and remote prognosis. Medicine. 1981;60(4):267–76.CrossRefGoogle Scholar
  63. 63.
    Kattah AG, et al. Hypertension in pregnancy is a risk factor for microalbuminuria later in life. J Clin Hypertens (Greenwich). 2013;15(9):617–23.CrossRefGoogle Scholar
  64. 64.
    McDonald SD, et al. Kidney disease after preeclampsia: a systematic review and meta-analysis. Am J Kidney Dis. 2010;55(6):1026–39.PubMedCrossRefGoogle Scholar
  65. 65.
    Mosca L, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women – 2011 update: a guideline from the American Heart Association. J Am Coll Cardiol. 2011;57(12):1404–23.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Garovic VD, et al. Hypertension in pregnancy as a risk factor for cardiovascular disease later in life. J Hypertens. 2010;28(4):826–33.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Bellamy L, et al. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007;335(7627):974.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Division of Nephrology and Hypertension, Department of General Internal MedicineMayo ClinicRochesterUSA

Personalised recommendations