Engineering Data Logistics for Agile Automation Systems Engineering

Requirements and Solution Concepts with AutomationML
  • Stefan BifflEmail author
  • Arndt Lüder
  • Felix Rinker
  • Laura Waltersdorfer
  • Dietmar Winkler


In the parallel engineering of large and long-running automation systems, such as Production Systems Engineering (PSE) projects, engineering teams with different backgrounds work in a so-called Round-Trip Engineering (RTE) process to iteratively enrich and refine their engineering artifacts, and need to exchange data efficiently to prevent the divergence of local engineering models. Unfortunately, the heterogeneity of local engineering artifacts and data, coming from several engineering disciplines, makes it hard to integrate the discipline-specific views on the data for efficient synchronization.

In this chapter, we introduce the approach of Engineering Data Logistics (EDaL) to support RTE requirements and enable the efficient integration and systematic exchange of engineering data in a PSE project. We propose the concept of EDaL, which analyzes efficient Engineering Data Exchange (EDEx) flows from data providers to a consumer derived from data exchange use cases. Requirements for EDEx flows are presented, for example, the definition and semantic mapping of engineering data elements for exchange. We discuss main requirements for and design elements of an EDaL information system for automating EDaL process capabilities. We evaluate the benefit and cost of the EDEx process and concepts in a feasibility case study with requirements and data from real-world use cases at a large PSE company in comparison to a traditional manual point-to-point engineering data exchange. Results from the feasibility study indicate that the EDEx process flows may be more effective than the traditional point-to-point engineering artifact exchange and a good foundation to EDaL for more agile engineering.


Multidisciplinary engineering Production systems engineering Cyber-physical production systems Engineering process Process design Data exchange Data integration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The financial support by the Christian Doppler Research Association, the Austrian Federal Ministry for Digital and Economic Affairs, and the National Foundation for Research, Technology and Development is gratefully acknowledged.


  1. Andersen, A. L., ElMaraghy, H., ElMaraghy, W., Brunoe, T. D., & Nielsen, K. (2018). A participatory systems design methodology for changeable manufacturing systems. International Journal of Production Research, 56(8), 2769–2787.CrossRefGoogle Scholar
  2. Biffl, S., Winkler, D., Mordinyi, R., Scheiber, S., & Holl, G. (2014a, September). Efficient monitoring of multi-disciplinary engineering constraints with semantic data integration in the multi-model dashboard process. In Emerging technology and factory automation (ETFA). IEEE.Google Scholar
  3. Biffl, S., Lüder, A., Schmidt, N., & Winkler, D. (2014b, October). Early and efficient quality assurance of risky technical parameters in a mechatronic design process. In Industrial electronics society, IECON 2014-40th annual conference of the IEEE (pp. 2544–2550). IEEE.Google Scholar
  4. Biffl, S., Gerhard, D., & Lüder, A. (2017). Introduction to the multi-disciplinary engineering for cyber-physical production systems. In Multi-disciplinary engineering for cyber-physical production systems (pp. 1–24). Cham: Springer.CrossRefGoogle Scholar
  5. Biffl, S., Eckhart, M., Lüder, A., Müller, T., Rinker, F., & Winkler, D. (2018). Data interface for coil car simulation (case study) part I, Technical Report, CDL-SQI-M2-TR02, TU Wien.Google Scholar
  6. Biffl, S., Eckhart, M., Lüder, A., Müller, T., Rinker, F., & Winkler, D. (2019a). Data interface for coil car simulation (case study) part II - Detailed data and process models, Technical Report, CDL-SQI-M2-TR03, TU Wien.Google Scholar
  7. Biffl, S., Lüder, A., Rinker, F., Waltersdorfer, L., & Winkler, D. (2019b). Introducing engineering data logistics for production systems engineering, Technical Report, CDL-SQI-2018-10, TU Wien. October, 2018.
  8. Biffl, S., Lüder, A., Rinker, F., Waltersdorfer, L., & Winkler, D. (2019c). Efficient engineering data exchange in multi-disciplinary systems engineering. In Proceeding of international conference on advanced information systems engineering (pp. 17–31). Cham: Springer.CrossRefGoogle Scholar
  9. Brambilla, M., Cabot, J., & Wimmer, M. (2017). Model-driven software engineering in practice. In Synthesis lectures on software engineering (Vol. 3, 2nd ed., pp. 1–207). San Rafael, CA: Morgan & Claypool.Google Scholar
  10. Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S., & Ratiu, D. (2010). Seamless model-based development: From isolated tools to integrated model engineering environments. Proceedings of the IEEE, 98(4), 526–545.Google Scholar
  11. Calà, A., Lüder, A., Cachada, A., Pires, F., Barbosa, J., Leitão, P., & Gepp, M. (2017, July). Migration from traditional towards cyber-physical production systems. In Industrial informatics (INDIN), 2017 IEEE 15th international conference (pp. 1147–1152). IEEE.Google Scholar
  12. Davis, F. D. (1985). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Doctoral dissertation, MIT.Google Scholar
  13. Diedrich, C., Lüder, A., & Hundt, L. (2011). Bedeutung der Interoperabilität bei Entwurf und Nutzung von automatisierten Produktionssystemen. at-Automatisierungstechnik Methoden und Anwendungen der Steuerungs-, Regelungs- und Informationstechnik, 59(7), 426–438.Google Scholar
  14. Drath, R. (Ed.). (2009). Datenaustausch in der Anlagenplanung mit AutomationML: Integration von CAEX, PLCopen XML und COLLADA. Berlin: Springer.Google Scholar
  15. Drath, R., Fay, A., & Barth, M. (2011). Interoperabilität von Engineering-Werkzeugen. at–Automatisierungstechnik, 59(7), 451–460.CrossRefGoogle Scholar
  16. Gould, P. (1997). What is agility? Manufacturing Engineer, 76(1), 28–31.CrossRefGoogle Scholar
  17. Grose, T. J., & Doney, G. C. (2002). PhD. Stephan A. Brodsky. Mastering XMI. Java programming with XMI, XML, and UML. Wiley.Google Scholar
  18. Hell, K. (2018). Methoden der projektübergreifenden Wiederverwendung im Anlagenentwurf: Konzeptionierung und Realisierung in der Automobilindustrie, Dissertation, Fakultät Maschinenbau, Otto-v.-Guericke Universität Magdeburg.Google Scholar
  19. Hohpe, G., & Woolf, B. (2003). Enterprise integration patterns: Designing, building, and deploying messaging solutions. Boston, MA: Addison-Wesley.Google Scholar
  20. Holl, G., Thaller, D., Grünbacher, P., & Elsner, C. (2012). Managing emerging configuration dependencies in multi product lines. In Proceedings of the Sixth International Workshop on Variability Modeling of Software-Intensive Systems (pp. 3–10). ACM.Google Scholar
  21. IEC 62714. (2018). Engineering data exchange format for use in industrial automation systems engineering - automation markup language, 4 Parts 1, IEC, 2014–2018.Google Scholar
  22. Jackson, M., & Johansson, C. (2003). An agility analysis from a production system perspective. Integrated Manufacturing Systems, 14(6), 482–488.CrossRefGoogle Scholar
  23. Jimenez-Ramirez, A., Barba, I., Reichert, M., Weber, B., & Del Valle, C. (2018, June). Clinical processes-the killer application for constraint-based process interactions? In International conference on advanced information systems engineering (pp. 374–390). Berlin: Springer.CrossRefGoogle Scholar
  24. Kovalenko, O., & Euzenat, J. (2016). Semantic matching of engineering data structures. In S. Biffl & M. Sabou (Eds.), Semantic web for intelligent engineering applications. Berlin: Springer.Google Scholar
  25. Lüder, A., & Schmidt, N. (2017). AutomationML in a nutshell. In Handbuch Industrie 4.0 Bd. 2 (pp. 213–258). Berlin: Springer.CrossRefGoogle Scholar
  26. Lüder, A., Pauly, J.-L., Kirchheim, K., Rinker, F., & Biffl, S. (2018a). Migration to AutomationML based tool chains – Incrementally overcoming engineering network challenges. In Proceeding of 5th AutomationML user conference, Göteborg, 24/25.10.2018; AML Association.
  27. Lüder, A., Pauly, J.-L., Rosendahl, R., Biffl, S., & Rinker, F. (2018b). Support for engineering chain migration towards multi-disciplinary engineering chains. In 2018 14th IEEE international conference on automation science and engineering (CASE 2018) (pp. 671–674). Germany, August 2018, IEEE.Google Scholar
  28. Medvidovic, N., Egyed, A., & Rosenblum, D. S. (1999, September). Round-trip software engineering using UML: From architecture to design and back. In Proceeding of the second international workshop on object-oriented reengineering (WOOR’99) (pp. 1–8). Cham: Springer.Google Scholar
  29. OMG. (2011). Business process model notation (BPMN) version 2.0. OMG specification (pp. 22–31). Object Management Group.Google Scholar
  30. Putze, S., Porzel, R., Savino, G. L., & Malaka, R. (2018, June). A manageable model for experimental research data: An empirical study in the materials sciences. In International conference on advanced information systems engineering (pp. 424–439). Cham: Springer.CrossRefGoogle Scholar
  31. Rosemann, M., & vom Brocke, J. (2015). The six core elements of business process management. In Handbook on business process management (Vol. 1, pp. 105–122). Berlin: Springer.CrossRefGoogle Scholar
  32. Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study research in software engineering. Empirical Software Engineering, 14(2), 131–164.CrossRefGoogle Scholar
  33. Sabou, M., Ekaputra, F. J., & Biffl, S. (2017). Semantic web technologies for data integration in multi-disciplinary engineering. In S. Biffl, A. Lüder, & D. Gerhard (Eds.), Multi-disciplinary engineering of cyber-physical production systems. Cham: Springer.Google Scholar
  34. Schäffler, T., Foehr, M., Lüder, A., & Supke, K. (2013, May). Engineering process evaluation: Evaluation of the impact of internationalisation decisions on the efficiency and quality of engineering processes. In 2013 IEEE International Symposium on Industrial Electronics (pp. 1–6). IEEE.Google Scholar
  35. VDI. (2012–2017). VDI-Richtlinie: VDI/VDE 3690 XML in der automation. Berlin: Beuth.Google Scholar
  36. Vogel-Heuser, B., Bauernhansl, T., & ten Hompel, M. (Ed.). (2017). Handbuch Industrie 4.0, Bände 1-4, VDI Springer.Google Scholar
  37. Wieringa, R. (2014). Design science methodology for information systems and software engineering. Berlin: Springer.CrossRefGoogle Scholar
  38. Winkler, D., Sabou, M., & Biffl, S. (2017). Improving quality assurance in multi-disciplinary engineering environments with semantic technologies. In L. D. Kounis (Ed.), Quality control and assurance – An ancient Greek term ReMastered. Book Chapter 8 (pp. 177–200). London: INTEC Publishing.Google Scholar
  39. Xu, X. (2012). From cloud computing to cloud manufacturing. Robotics and Computer-Integrated Manufacturing, 28(1), 75–86.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stefan Biffl
    • 1
    Email author
  • Arndt Lüder
    • 2
  • Felix Rinker
    • 3
  • Laura Waltersdorfer
    • 3
  • Dietmar Winkler
    • 3
  1. 1.Institute of Information Systems EngineeringTechnische Universität WienViennaAustria
  2. 2.Otto-v.-Guericke University/IAFMagdeburgGermany
  3. 3.Christian Doppler Laboratory for Security and Quality Improvement in the Production System Lifecycle (CDL-SQI), Institute of Information Systems EngineeringTechnische Universität Wien,ViennaAustria

Personalised recommendations