Advertisement

Engineering of Signaling Systems

  • Johannes LutzEmail author
  • Kristofer Hell
  • Ralf Westphal
  • Mathias Mühlhause
Chapter

Abstract

Rail system products demand high standards on safety, security, and quality. To guarantee this, the design of such a system including its processes, utilized engineering tools, and produced data must be approved to meet the strict requirements. Engineering of signaling systems can be utilized as a use case to derive industries’ safety and quality challenges regarding engineering tools and data flows.

To understand these challenges in a comprehensive way, this chapter gives an overview about the general signaling business, its engineering processes, and its engineering tools including aspects of data flows and semantics. Based on the author’s findings in these subjects, requirements and respectively challenges are derived and summarized in the last section of this chapter. Each list entry is classified as quality and/or safety challenge. Furthermore, this chapter enables the link between industrial needs regarding engineering tool chains and current research in this field.

Keywords

Rail automation Signaling system Rail system engineering Integrated data management Quality-safety and security management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bigvand, P. G., & Fay, A. (2017). A workflow support system for the process and automation engineering of production plants. Toronto: IEEE ICIT.CrossRefGoogle Scholar
  2. Buder, J. (2017). Neues Planungsverfahren für Anlagen der Leit- und Siche-ungstechnik auf Basis durchgängiger elektronischer Datenhaltung. Dissertation, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden: Technische Universität Dresden.Google Scholar
  3. DB Station&Service AG & DB Netz AG. (2018). BIM-Vorgaben, BIM-Methodik, Digitaltes Planen und Bauen. Berlin.Google Scholar
  4. DIN EN 50128. (2012). Railway applications – Communication, signaling and processing systems – Software for railway control and protection systems. German version EN 50128:2011. Beuth: Berlin.Google Scholar
  5. DIN EN 81346-1. (2013). Industrial systems, installations and equipment and industrial products – Structuring principles and reference designations – Part 1: Basic rules (IEC 81346-1:2009). German version EN 81346-1:2009. Beuth: Berlin.Google Scholar
  6. DIN EN ISO 16739:2017-04. (2017). Industry Foundation Classes (IFC) for data sharing in the construction and facility management industries (ISO 16739:2013); English version EN ISO 16739:2016.Google Scholar
  7. Duggan, P., & Boraelv, A. (2015). Mathematical proof in an automated environment for railway interlockings. Technical paper in IRSE presidential program presented at IRSE NEWS 217, London.Google Scholar
  8. Falkner, A., & Schreiner, H. (2014). Configuration and reconfiguration in industry. In A. Felfernig, L. Hotz, C. Bagley, & J. Tiihonen (Eds.), Knowledge-based configuration – From research to business cases (pp. 199–210). Waltham, MA: Morgan Kaufmann. (chapter 16).CrossRefGoogle Scholar
  9. Haselboeck, A., & Schenner, G. (2014). S’UPREME. In A. Felfernig, L. Hotz, C. Bagley, & J. Tiihonen (Eds.), Knowledge-based configuration – From research to business cases (pp. 263–269). Waltham, MA: Morgan Kaufmann. (chapter 22).CrossRefGoogle Scholar
  10. Holm, T., Horn, S., Lehmann, O., & Seidel, H. (2012). Reference model based design of tool landscapes for rail infrastructure engineering. In B. Katalinic (Ed.), DAAAM international scientific book 2012 (11th ed., pp. 267–276). DAAAM International Vienna.Google Scholar
  11. IEC 62443-3-3. (2013). Industrial communication networks – Network and system security – Part 3-3: System security requirements and security levels, IEC2013.Google Scholar
  12. Jeans, J. S. (1875). Jubilee memorial of the railway system: A history of the Stockton and Darlington railway and a record of results. Michigan: Longmans, Green, and Company.Google Scholar
  13. Kuny, T. (1997). The digital dark ages? Challenges in the preservation of electronic information. In Paper presented at the 63rd International Federation of Library Associations and Institutions (IFLA) council and general conference. Copenhagen, 31 August–5 September 1997. Retrieved December 17, 2018, from https://archive.ifla.org/IV/ifla63/63kuny1.pdf.
  14. Linder, C., & Grimm, M. (2012). Datenmodellanalyse zum Austausch von Projektierungsdaten für Stellwerkssysteme in INESS. Journal of Signal and Draht, 104(9), 16–21.Google Scholar
  15. Maschek, U. (2018). Sicherung des Schienenverkehrs. Grundlagen und Planung der Leit- und Sicherungstechnik (4. überarbeitete und erweiterte Auflage). Wiesbaden: Springer.Google Scholar
  16. Nash, A., Huerlimann, D., Schuette, J., & Krauss, V. P. (2004). RailML – A standard interface for railroad applications. In COMPRAIL 2004, Dresden.Google Scholar
  17. Odgen, C. K., & Richards, I. A. (1923). The meaning of meaning. London: Kegan Paul, Trench, Trubner.Google Scholar
  18. Pachl, J. (2018). Railway operation and control (4th ed.). Mountlake Terrace, WA: VTD Rail.Google Scholar
  19. Seidel, H., Mühlhause, M., Jaeger, T., Fay, A., & Diedrich, C. (2017). Automatic workflow generation in engineering processes. Automatisierungstechnik, 65(1), 37–48.  https://doi.org/10.1515/auto-2016-0096.
  20. Sunindyo, W., Moser, T., Winkler, D., & Mordinyi, R. (2013). Project progress and risk monitoring in automation systems engineering. In D. Winkler, S. Biffl, & J. Bergsmann (Eds.), Software quality – Increasing value in software and systems development (pp. 30–54). Berlin: Springer.CrossRefGoogle Scholar
  21. Theeg, G., & Vlasenko, S. (2017). Railway signalling& interlocking: International compendium (2nd revised ed.). Bingen: PMC Media House.Google Scholar
  22. TÜV-SÜD. (2017). The future of rail automation. Retrieved October 25, 2018 from https://www.tuev-sued.de/rail-en/the-future-of-rail-automation.
  23. Verein Deutscher Ingenieure, VDI 3695, Part 3. (2010). Engineering of industrial plants; Evaluation and optimization; subject methods. Beuth: Berlin.Google Scholar
  24. ZVEI – Zentralverband Elektronik- und Elektronikindustrie e.V. (2010). Leitfaden Life-Cycle-Management für Produkte und System der Automation. Frankfurt am Main.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Johannes Lutz
    • 1
    Email author
  • Kristofer Hell
    • 1
  • Ralf Westphal
    • 1
  • Mathias Mühlhause
    • 1
  1. 1.Siemens Mobility GmbHBraunschweigGermany

Personalised recommendations