Advertisement

Revisiting Practical Byzantine Fault Tolerance Through Blockchain Technologies

  • Nicholas StifterEmail author
  • Aljosha Judmayer
  • Edgar Weippl
Chapter

Abstract

The connection between Byzantine fault tolerance and cryptocurrencies, such as Bitcoin, may not be apparent immediately. Byzantine fault tolerance is intimately linked to engineering and design challenges of developing long-running and safety-critical technical systems. Its origins can be traced back to the question of how to deal with faulty sensors in distributed systems and the fundamental insight that majority voting schemes may be insufficient to guarantee correctness if arbitrary, or so-called Byzantine failures, can occur. However, achieving resilience against Byzantine failures has its price, both in terms of the redundancy required within a system and the incurred communication overhead. Together with the complexity of correctly implementing Byzantine fault-tolerant (BFT) protocols, it may help to explain why BFT systems have not yet been widely deployed in practice, even though practical designs exist for almost 20 years. On the other hand, asking anyone about Bitcoin or blockchain 10 years ago would have only raised quizzical looks. Since then, the ecosphere surrounding blockchain technologies has grown from the pseudonymously published proposal for a peer-to-peer electronic cash system into a multi-billion-dollar industry. At the heart of this success story lies not only the technical innovations presented by Bitcoin but a colorful and diverse community that has succeeded in bridging gaps and bringing together various disciplines from academia and industry alike. Bitcoin reinvigorated interest in the topic of BFT as it was arguably the first system that achieved a practical form of Byzantine fault tolerance with a large and changing number of participants. Research into the fundamental principles and mechanisms behind the underlying blockchain technology of Bitcoin has since helped advance the field and state of the art regarding BFT protocols. This chapter will outline how these modern blockchain technologies relate to the field of Byzantine fault tolerance and outline advantages and disadvantages in their design decisions and fundamental assumptions. Thereby, we highlight that Byzantine fault tolerance should be considered a practical and fundamental building block for modern long-running and safety critical systems and that the principles, mechanisms, and blockchain technologies themselves could help improve the security and quality of such systems.

Keywords

Blockchain Byzantine fault tolerance Distributed ledger technologies Bitcoin Distributed systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Georg Merzdovnik as well as the participants of Dagstuhl Seminar 18152 “Blockchains, Smart Contracts and Future Applications” for valuable discussions and insights. This research was funded by Bridge 1 858561 SESC, Bridge 1 864738 PR4DLT (all FFG), the Christian Doppler Laboratory for Security and Quality Improvement in the Production System Lifecycle (CDL-SQI), Institute of Information Systems Engineering, TU Wien, and the competence center SBA-K1 funded by COMET. The financial support by the Christian Doppler Research Association; the Austrian Federal Ministry for Digital and Economic Affairs; and the National Foundation for Research, Technology, and Development is gratefully acknowledged.

References

  1. Abraham, I., Gueta, G., & Malkhi, D. (2018). Hot-stuff the linear, optimal-resilience, one-message bft devil. arXiv:1803.05069. https://arxiv.org/pdf/1803.05069.pdf
  2. Aiyer, A. S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.-P., & Porth, C. (2005). Bar fault tolerance for cooperative services. In ACM SIGOPS Operating Systems Review (Vol. 39, pp. 45–58). New York, NY: ACM. http://www.dcc.fc.up.pt/~Ines/aulas/1314/SDM/papers/BAR%20Fault%20Tolerance%20for%20Cooperative%20Services%20-%20UIUC.pdf
  3. Androulaki, E., Capkun, S., & Karame, G. O. (2012). Two bitcoins at the price of one? Double-spending attacks on fast payments in bitcoin. In CCS. http://eprint.iacr.org/2012/248.pdf
  4. Aspnes, J., Jackson, C., & Krishnamurthy, A. (2005). Exposing Computationally-Challenged Byzantine Impostors. Department of Computer Science, Yale University, New Haven, CT, Tech. Rep. http://www.cs.yale.edu/homes/aspnes/papers/tr1332.pdf Google Scholar
  5. Back, A. (2002). Hashcash-a denial of service counter-measure. Retrieved March 9, 2016, from http://www.hashcash.org/papers/hashcash.pdf Google Scholar
  6. Bamert, T., Decker, C., Elsen, L., Wattenhofer, R., & Welten, S. (2013). Have a snack, pay with bitcoins. In 2013 IEEE Thirteenth International Conference on IEEE Peer-to-Peer Computing (P2P) (pp. 1–5). Piscataway, NJ: IEEE. http://www.bheesty.com/cracker/1450709524_17035424cb/p2p2013_093.pdf Google Scholar
  7. Ben-Or, M. (1983). Another advantage of free choice (extended abstract): Completely asynchronous agreement protocols. In Proceedings of the Second Annual ACM Symposium on Principles of Distributed Computing (pp. 27–30). New York, NY: ACM. http://homepage.cs.uiowa.edu/~ghosh/BenOr.pdf CrossRefGoogle Scholar
  8. Ben Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., et al. (2014). Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy (SP) (pp. 459–474). Piscataway, NJ: IEEE. http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf CrossRefGoogle Scholar
  9. Bentov, I., Lee, C., Mizrahi, A., & Rosenfeld, M. (2014). Proof of activity: Extending bitcoin’s proof of work via proof of stake [extended abstract] y. ACM SIGMETRICS Performance Evaluation Review, 42(3), 34–37. http://eprint.iacr.org/2014/452.pdf CrossRefGoogle Scholar
  10. Bentov, I., Pass, R., & Shi, E. (2016). Snow white: Provably secure proofs of stake. Retrieved November 11, 2016, from https://eprint.iacr.org/2016/919.pdf Google Scholar
  11. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J. A., & Felten, E. W. (2015). Sok: Research perspectives and challenges for bitcoin and cryptocurrencies. In IEEE Symposium on Security and Privacy. http://www.ieee-security.org/TC/SP2015/papers-archived/6949a104.pdf
  12. Buterin, V. (2014a). Ethereum: A next-generation smart contract and decentralized application platform. Retrieved August 22, 2016, from https://github.com/ethereum/wiki/wiki/White-Paper Google Scholar
  13. Buterin, V. (2014b). Slasher: A punitive proof-of-stake algorithm. Retrieved March 24, 2017, from https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/ Google Scholar
  14. Buterin, V., & Griffith, V. (2017). Casper the friendly finality gadget. arXiv:1710.09437. Retrieved November 6, 2017, from https://arxiv.org/pdf/1710.09437.pdf
  15. Cachin, C. (2016). Architecture of the hyperledger blockchain fabric. Retrieved August 10, 2016, from https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf Google Scholar
  16. Cachin, C., Kursawe, K., & Shoup, V. (2000). Random oracles in constantinople: Practical asynchronous byzantine agreement using cryptography. In Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed Computing (pp. 123–132). New York, NY: ACM. https://www.zurich.ibm.com/~cca/papers/abba.pdf CrossRefGoogle Scholar
  17. Cachin, C., & Vukolić, M. (2017). Blockchain consensus protocols in the wild. In 31 International Symposium on Distributed Computing. arXiv preprint arXiv:1707.01873Google Scholar
  18. Castro, M., & Liskov, B. (2002). Practical byzantine fault tolerance and proactive recovery. ACM Transactions on Computer Systems, 20, 398–461.CrossRefGoogle Scholar
  19. Castro, M., Liskov, B. (1999). Practical byzantine fault tolerance. In OSDI (Vol. 99, pp. 173–186). http://pmg.csail.mit.edu/papers/osdi99.pdf
  20. Chandra, T. D., Griesemer, R., & Redstone, J. (2007). Paxos made live: An engineering perspective. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles of Distributed Computing (pp. 398–407). New York, NY: ACM. https://www.kth.se/polopoly_fs/1.116933!/Menu/general/column-content/attachment/paxoslive.pdf CrossRefGoogle Scholar
  21. Chaum, D. (1983). Blind signatures for untraceable payments. In Advances in cryptology (pp. 199–203). Berlin: Springer. http://blog.koehntopp.de/uploads/Chaum.BlindSigForPayment.1982.PDF CrossRefGoogle Scholar
  22. Chockler, G. V., Keidar, I., & Vitenberg, R. (2001). Group communication specifications: a comprehensive study. ACM Computing Surveys, 33(4), 427–469.CrossRefGoogle Scholar
  23. Clement, A., Marchetti, M., Wong, E., Alvisi, L., & Dahlin, M. (2008). BFT: the time is now. In Proceedings of the 2nd Workshop on Large-Scale Distributed Systems and Middleware (p. 13). New York, NY: ACM.Google Scholar
  24. Clement, A., Wong, E. L., Alvisi, L., Dahlin, M., & Marchetti, M. (2009). Making byzantine fault tolerant systems tolerate byzantine faults. In NSDI (Vol. 9, pp. 153–168). http://static.usenix.org/events/nsdi09/tech/full_papers/clement/clement.pdf
  25. Coleman, J., Horne, L., & Xuanji, L. (2018). Counterfactual: Generalized state channels [online]. Retrieved May 18, 2019, from https://l4.ventures/papers/statechannels.pdf Google Scholar
  26. Costan, V., & Devadas, S. (2016). Intel sgx explained. IACR Cryptology ePrint Archive, 2016(86), 1–118.Google Scholar
  27. Croman, K., Decker, C., Eyal, I., Gencer, A. E., Juels, A., Kosba, A., et al. (2016). On scaling decentralized blockchains. In 3rd Workshop on Bitcoin and Blockchain Research, Financial Cryptography 16. http://www.tik.ee.ethz.ch/file/74bc987e6ab4a8478c04950616612f69/main.pdf
  28. Dai, W. (1998). bmoney. Retrieved April 4, 2016, from http://www.weidai.com/bmoney.txt
  29. De Filippi, P., & Loveluck, B. (2016). The invisible politics of bitcoin: governance crisis of a decentralised infrastructure. Retrieved October 18, 2017, from https://halshs.archives-ouvertes.fr/halshs-01380617/document Google Scholar
  30. Decker, C., & Wattenhofer, R. (2013). Information propagation in the bitcoin network. In 2013 IEEE Thirteenth International Conference on Peer-to-Peer Computing (P2P) (pp. 1–10). Piscataway, NJ: IEEE. http://diyhpl.us/~bryan/papers2/bitcoin/Information%20propagation%20in%20the%20Bitcoin%20network.pdf Google Scholar
  31. Dinh, T. T. A., Wang, J., Chen, G., Liu, R., Ooi, B. C., & Tan, K.-L. (2017). Blockbench: A framework for analyzing private blockchains. In Proceedings of the 2017 ACM International Conference on Management of Data (pp. 1085–1100). New York, NY: ACM.Google Scholar
  32. Douceur, J. R. (2002). The sybil attack. In International Workshop on Peer-to-Peer Systems (pp. 251–260). Berlin: Springer. http://www.cs.cornell.edu/people/egs/cs6460-spring10/sybil.pdf CrossRefGoogle Scholar
  33. Doudou, A., Garbinato, B., & Guerraoui, R. (2002). Encapsulating failure detection: From crash to byzantine failures. In International Conference on Reliable Software Technologies (pp. 24–50). Berlin: Springer.Google Scholar
  34. Dutertre, B., Crettaz, V., & Stavridou, V. (2002). Intrusion-tolerant enclaves. In Proceedings of the 2002 IEEE Symposium on Security and Privacy (pp. 216–224). Piscataway, NJ: IEEE.CrossRefGoogle Scholar
  35. Dwork, C., & Naor, M. (1992). Pricing via processing or combatting junk mail. In Annual International Cryptology Conference (pp. 139–147). Berlin: Springer. https://web.cs.dal.ca/~abrodsky/7301/readings/DwNa93.pdf Google Scholar
  36. Dziembowski, S., Eckey, L., Faust, S., & Malinowski, D. (2017). Perun: Virtual Payment Channels Over Cryptographic Currencies. Cryptology ePrint Archive, Report 2017/635. Retrieved November 20, 2017, from https://eprint.iacr.org/2017/635.pdf
  37. Esteves-Verissimo, P., Völp, M., Decouchant, J., Rahli, V., & Rocha, F. (2017). Meeting the challenges of critical and extreme dependability and security. In 2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC) (pp. 92–97). Piscataway, NJ: IEEE.CrossRefGoogle Scholar
  38. Eyal, I., Gencer, A. E., Sirer, E. G., & van Renesse, R. (2016). Bitcoin-ng: A scalable blockchain protocol. In 13th USENIX Security Symposium on Networked Systems Design and Implementation (NSDI’16). Berkeley, CA: USENIX Association. http://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf
  39. F. Reid, M. H. (2011). An analysis of anonymity in the bitcoin system. In 2011 IEEE International Conference on Privacy, Security, Risk, and Trust, and IEEE International Conference on Social Computing. http://arxiv.org/pdf/1107.4524
  40. Finney, H. (2004). Reusable proofs of work (RPOW). Retrieved April 31, 2016, from http://web.archive.org/web/20071222072154/http://rpow.net/ Google Scholar
  41. Fischer, M. J., Lynch, N. A., & Paterson, M. S. (1985). Impossibility of distributed consensus with one faulty process. Journal of the ACM, 32, 374–382. http://macs.citadel.edu/rudolphg/csci604/ImpossibilityofConsensus.pdf MathSciNetzbMATHCrossRefGoogle Scholar
  42. Garay, J., & Kiayias, A. (2018). Sok: A Consensus Taxonomy in the Blockchain Era. Cryptology ePrint Archive, Report 2018/754. https://eprint.iacr.org/2018/754.pdf
  43. Garay, J., Kiayias, A., & Leonardos, N. (2015). The bitcoin backbone protocol: Analysis and applications. In Advances in Cryptology-EUROCRYPT 2015 (pp. 281–310). Berlin: Springer. http://courses.cs.washington.edu/courses/cse454/15wi/papers/bitcoin-765.pdf CrossRefGoogle Scholar
  44. Garay, J., Kiayias, A., & Leonardos, N. (2017). The bitcoin backbone protocol with chains of variable difficulty. In Annual International Cryptology Conference (pp. 291–323). Berlin: Springer.Google Scholar
  45. Gervais, A., Karame, G. O., Wüst, K., Glykantzis, V., Ritzdorf, H., & Capkun, S. (2016). On the security and performance of proof of work blockchains. In Proceedings of the 2016 ACM SIGSAC (pp. 3–16). New York, NY: ACM.Google Scholar
  46. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., & Zeldovich, N. (2017). Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems Principles pp. 51–68. New York, NY: ACM.CrossRefGoogle Scholar
  47. Gipp, B., Meuschke, N., & Gernandt, A. (2015). Decentralized trusted timestamping using the crypto currency bitcoin. preprint arXiv:1502.04015.Google Scholar
  48. Groce, A., Katz, J., Thiruvengadam, A., & Zikas, V. (2012). Byzantine agreement with a rational adversary (pp. 561–572). Berlin: Springer. http://cs.ucla.edu/~vzikas/pubs/GKTZ12.pdf zbMATHGoogle Scholar
  49. Guerraoui, R., Knežević, N., Quéma, V., & Vukolić, M. (2010). The next 700 bft protocols. In Proceedings of the 5th European Conference on Computer Systems (pp. 363–376). New York, NY: ACM. https://infoscience.epfl.ch/record/121590/files/TR-700-2009.pdf CrossRefGoogle Scholar
  50. Herlihy, M. P., & Tygar, J. D. (1987). How to make replicated data secure. In Conference on the Theory and Application of Cryptographic Techniques (pp. 379–391). Berlin: Springer.Google Scholar
  51. Hoepman, J.-H. (2007). Distributed double spending prevention. In Security Protocols Workshop (pp. 152–165). Berlin: Springer. http://www.cs.kun.nl/~jhh/publications/double-spending.pdf Google Scholar
  52. Jakobsson, M., & Juels, A. (1999). Proofs of work and bread pudding protocols. In Secure information networks (pp. 258–272). Berlin: Springer. https://link.springer.com/content/pdf/10.1007/978-0-387-35568-9_18.pdf CrossRefGoogle Scholar
  53. Jarecki, S., & Odlyzko, A. (1997). An efficient micropayment system based on probabilistic polling. In Financial cryptography (pp. 173–191). Berlin: Springer. https://www.researchgate.net/profile/Stanislaw_Jarecki/publication/220797099_An_Efficient_Micropayment_System_Based_on_Probabilistic_Polling/links/0f31753c7f02552a9d000000.pdf CrossRefGoogle Scholar
  54. Judmayer, A., Zamyatin, A., Stifter, N., Voyiatzis, A. G., & Weippl, E. (2017). Merged mining: Curse or cure? In Proceedings of the International Workshop on Cryptocurrencies and Blockchain Technology, CBT’17. https://eprint.iacr.org/2017/791.pdf
  55. Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., & Fu, K. (2003). Plutus: scalable secure file sharing on untrusted storage. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (pp. 3). Berkeley, CA: USENIX AssociationGoogle Scholar
  56. Kiayias, A., Konstantinou, I., Russell, A., David, B., & Oliynykov, R. (2016). A provably secure proof-of-stake blockchain protocol. Retrieved November 9, 2016, from http://eprint.iacr.org/2016/889.pdf zbMATHGoogle Scholar
  57. Kiayias, A., & Panagiotakos, G. (2015). Speed-security tradeoff s in blockchain protocols. Retrieved October 17, 2016, from https://eprint.iacr.org/2015/1019.pdf Google Scholar
  58. Kiayias, A., Russell, A., David, B., & Oliynykov, R. (2017). Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual International Cryptology Conference (pp. 357–388). Berlin: Springer.Google Scholar
  59. Kihlstrom, K. P., Moser, L. E., & Melliar-Smith, P. M. (1998). The securering protocols for securing group communication. In Proceedings of the Thirty-First Hawaii International Conference on System Sciences (Vol. 3, pp. 317–326). Piscataway, NJ: IEEE.Google Scholar
  60. King, S., & Nadal, S. (2012). Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. Retrieved January 7, 2017, from https://peercoin.net/assets/paper/peercoin-paper.pdf Google Scholar
  61. Lamport, L. (1984). Using time instead of timeout for fault-tolerant distributed systems. ACM Transactions on Programming Languages and Systems, 6, 254–280. http://131.107.65.14/en-us/um/people/lamport/pubs/using-time.pdf CrossRefGoogle Scholar
  62. Lamport, L. (1998). The part-time parliament. ACM Transactions on Computer Systems, 16, 133–169. https://www.microsoft.com/en-us/research/uploads/prod/2016/12/The-Part-Time-Parliament.pdf CrossRefGoogle Scholar
  63. Lamport, L., Shostak, R., & Pease, M. (1982). The byzantine generals problem. ACM Transactions on Programming Languages and Systems, 4, 382–401. http://people.cs.uchicago.edu/~shanlu/teaching/33100_wi15/papers/byz.pdf zbMATHCrossRefGoogle Scholar
  64. Li, H. C., Clement, A., Wong, E. L., Napper, J., Roy, I., Alvisi, L., & Dahlin, M. (2006). Bar gossip. In Proceedings of the 7th Symposium on Operating Systems Design and Implementation (pp. 191–204). Berkeley, CA: USENIX Association. http://www.cs.utexas.edu/users/dahlin/papers/bar-gossip-apr-2006.pdf Google Scholar
  65. Litecoin.org. (n.d.). Retrieved May 18, 2019, from https://litecoin.org/
  66. Liu, S., Viotti, P., Cachin, C., Quéma, V., & Vukolić, M. (2016). XFT: Practical fault tolerance beyond crashes. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) (pp. 485–500).Google Scholar
  67. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., & Saxena, P. (2016). A secure sharding protocol for open blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (pp. 17–30). New York, NY: ACM. https://www.comp.nus.edu.sg/~prateeks/papers/Elastico.pdf Google Scholar
  68. Maesa, D. D. F., Mori, P., & Ricci, L. (2017). Blockchain based access control. In IFIP International Conference on Distributed Applications and Interoperable Systems (pp. 206–220). Berlin: Springer.CrossRefGoogle Scholar
  69. McKeen, F., Alexandrovich, I., Anati, I., Caspi, D., Johnson, S., Leslie-Hurd, R., et al. (2016). Intel® software guard extensions (intel® sgx) support for dynamic memory management inside an enclave. In Proceedings of the Hardware and Architectural Support for Security and Privacy 2016 (p. 10). New York, NY: ACM.Google Scholar
  70. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G. M., & Savage, S. (2013). A fistful of bitcoins: Characterizing payments among men with no names. In Proceedings of the 2013 Conference on Internet Measurement Conference (pp. 127–140). New York, NY: ACM. https://cseweb.ucsd.edu/~smeiklejohn/files/imc13.pdf CrossRefGoogle Scholar
  71. Micali, S. (2016). Algorand: The efficient and democratic ledger. Retrieved Febraury 9, 2017, from https://arxiv.org/pdf/1607.01341.pdf Google Scholar
  72. Miller, A., & LaViola, J. J. (2014). Anonymous byzantine consensus from moderately-hard puzzles: A model for bitcoin. Retrieved March 9, 2016, from https://socrates1024.s3.amazonaws.com/consensus.pdf Google Scholar
  73. Miller, A., Xia, Y., Croman, K., Shi, E., & Song, D. (2016). The honey badger of bft protocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (pp. 31–42). New York, NY: ACM. https://eprint.iacr.org/2016/199.pdf Google Scholar
  74. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Retrieved July 1, 2015, from https://bitcoin.org/bitcoin.pdf Google Scholar
  75. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Miller, A., & Goldfeder, S. (2016). Bitcoin and cryptocurrency technologies. Retrieved March 29, 2016, from https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton_bitcoin_book.pdf zbMATHGoogle Scholar
  76. Paillisse, J., Subira, J., Lopez, A., Rodriguez-Natal, A., Ermagan, V., Maino, F., & Cabellos, A. (2019). Distributed access control with blockchain. preprint arXiv:1901.03568.Google Scholar
  77. Palmer, J., Nakamoto S., /u/PowerLemons, Ricks, C. (n.d.). Dogecoin.com [online]. Retrieved May 18, 2019, from https://dogecoin.com/
  78. Pass, R., Seeman, L., & Shelat, A. (2017). Analysis of the blockchain protocol in asynchronous networks. In Annual International Conference on the Theory and Applications of Cryptographic Techniques (pp. 643–673). Berlin: Springer.zbMATHGoogle Scholar
  79. Pass, R., & Shi, E. (2017a). Hybrid consensus: Efficient consensus in the permissionless model. In 31st International Symposium on Distributed Computing (DISC 2017) Merzig-Wadern: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.Google Scholar
  80. Pass, R., & Shi, E. (2017b). The sleepy model of consensus. In International Conference on the Theory and Application of Cryptology and Information Security (pp. 380–409). Berlin: Springer.zbMATHGoogle Scholar
  81. Pass, R., & Shi, E. (2018). Thunderella: Blockchains with optimistic instant confirmation. In Annual International Conference on the Theory and Applications of Cryptographic Techniques (pp. 3–33). Berlin: Springer.Google Scholar
  82. Pease, M., Shostak, R., & Lamport, L. (1980). Reaching agreement in the presence of faults. Journal of the ACM, 27, 228–234. https://www.microsoft.com/en-us/research/uploads/prod/2016/12/Reaching-Agreement-in-the-Presence-of-Faults.pdf MathSciNetzbMATHCrossRefGoogle Scholar
  83. Pitta, J. (1999). Requiem of a bright idea [online]. Retrieved May 18, 2019, from http://www.forbes.com/forbes/1999/1101/6411390a.html Google Scholar
  84. Poon, J., & Dryja, T. (2016). The bitcoin lightning network. Retrieved July 7, 2016, from https://lightning.network/lightning-network-paper.pdf Google Scholar
  85. Rabin, M. O. (1983). Randomized byzantine generals. In 24th Annual Symposium on Foundations of Computer Science (pp. 403–409). Piscataway, NJ: IEEE. https://www.cs.princeton.edu/courses/archive/fall05/cos521/byzantin.pdf Google Scholar
  86. Ron, D., & Shamir, A. (2013). Quantitative analysis of the full bitcoin transaction graph. In International Conference on Financial Cryptography and Data Security (pp. 6–24). Berlin: Springer.CrossRefGoogle Scholar
  87. Schneider, F. B. (1990). Implementing fault-tolerant services using the state machine approach: A tutorial. ACM Computing Surveys, 22, 299–319. http://www-users.cselabs.umn.edu/classes/Spring-2014/csci8980-sds/Papers/ProcessReplication/p299-schneider.pdf CrossRefGoogle Scholar
  88. Schwartz, D., Youngs, N., & Britto, A. (2014). The ripple protocol consensus algorithm. Retrieved August 8, 2016, from https://ripple.com/files/ripple_consensus_whitepaper.pdf Google Scholar
  89. Schwarz, A. (2011) Squaring the triangle: Secure, decentralized, human-readable names. Retrieved November 12, 2014, from http://www.aaronsw.com/weblog/squarezooko
  90. Sompolinsky, Y., & Zohar, A. (2013). Accelerating bitcoin’s transaction processing. Fast money grows on trees, not chains. http://eprint.iacr.org/2013/881.pdf
  91. Stifter, N., Judmayer, A., Schindler, P., Zamyatin, A., & Weippl, E. (2018). Agreement with Satoshi—on the Formalization of Nakamoto Consensus. Cryptology ePrint Archive, Report 2018/400. https://eprint.iacr.org/2018/400.pdf
  92. Subbiah, A., & Blough, D. M. (2005). An approach for fault tolerant and secure data storage in collaborative work environments. In Proceedings of the 2005 ACM workshop on Storage Security and Survivability (pp. 84–93). New York, NY: ACM.CrossRefGoogle Scholar
  93. Szabo, N. (2005). Bit gold. Retrieved April 4, 2016, from http://unenumerated.blogspot.co.at/2005/12/bit-gold.html Google Scholar
  94. Szalachowski, P. (2018). (short paper) towards more reliable bitcoin timestamps. In 2018 Crypto Valley Conference on Blockchain Technology (CVCBT) (pp. 101–104). Piscataway, NJ: IEEE.CrossRefGoogle Scholar
  95. Taylor, M. B. (2013). Bitcoin and the age of bespoke silicon. In Proceedings of the 2013 International Conference on Compilers, Architectures and Synthesis for Embedded Systems (p. 16). Piscataway, NJ: IEEE Press. https://cseweb.ucsd.edu/~mbtaylor/papers/bitcoin_taylor_cases_2013.pdf
  96. Veronese, G. S., Correia, M., Bessani, A. N., & Lung, L. C. (2009). Highly-resilient services for critical infrastructures. In Proceedings of the Embedded Systems and Communications Security Workshop.Google Scholar
  97. Veronese, G. S., Correia, M., Bessani, A. N., Lung, L. C., & Verissimo, P. (2013). Efficient byzantine fault-tolerance. IEEE Transactions on Computers, 62, 16–30. https://www.researchgate.net/profile/Miguel_Correia3/publication/260585535_Efficient_Byzantine_Fault-Tolerance/links/5419615d0cf25ebee9885215.pdf MathSciNetzbMATHCrossRefGoogle Scholar
  98. Vukolić, M. (2010). The byzantine empire in the intercloud. ACM Sigact News, 41(3), 105–111.CrossRefGoogle Scholar
  99. Vukolić, M. (2015). The quest for scalable blockchain fabric: Proof-of-work vs. bft replication. In International Workshop on Open Problems in Network Security (pp. 112–125). Berlin: Springer. http://vukolic.com/iNetSec_2015.pdf Google Scholar
  100. Vukolic, M. (2016). Eventually returning to strong consistency. Retrieved August 10, 2016, from https://pdfs.semanticscholar.org/a6a1/b70305b27c556aac779fb65429db9c2e1ef2.pdf Google Scholar
  101. Wang, J., Wu, P., Wang, X., & Shou, W. (2017). The outlook of blockchain technology for construction engineering management. Frontiers of Engineering Management, 4(1), 67–75.CrossRefGoogle Scholar
  102. Wang, Z., Lin, J., Cai, Q., Wang, Q., Jing, J., & Zha, D. (2019). Blockchain-based certificate transparency and revocation transparency. In International Conference on Financial Cryptography and Data Security (pp 144–162). Berlin: Springer.CrossRefGoogle Scholar
  103. Wensley, J. H., Lamport, L., Goldberg, J., Green, M. W., Levitt, K. N., Melliar-Smith, P. M., et al. (1978). Sift: Design and analysis of a fault-tolerant computer for aircraft control. Proceedings of the IEEE, 66(10), 1240–1255.CrossRefGoogle Scholar
  104. Zhao, W., & Babi, M. (2013). Byzantine fault tolerant collaborative editing. In IET International Conference on Information and Communications Technologies (IETICT 2013) (pp. 233–240). IET.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicholas Stifter
    • 1
    • 2
    Email author
  • Aljosha Judmayer
    • 2
  • Edgar Weippl
    • 1
    • 2
  1. 1.Christian Doppler Laboratory for Security and Quality Improvement in the Production System Lifecycle (CDL-SQI), Institute of Information Systems EngineeringTechnische Universität WienViennaAustria
  2. 2.SBA ResearchViennaAustria

Personalised recommendations