Physical Optics pp 751-901 | Cite as
Light propagation in anisotropic media
Chapter
First Online:
Abstract
So far, the interaction between light and matter has been treated very succinctly, approximating the polarization P and the magnetization M with linear functions of the fields E and B. In this chapter, we will stick with this assumption, however, we will devote more attention to optical materials and, in particular, to the study of their anisotropic properties. The field of this study is nevertheless very vast and of great applicative importance, for the numerous effects that are encountered there.
Preview
Unable to display preview. Download preview PDF.
Bibliographical references
- Applequist J., Optical activity: Biot’s bequest, American Scientist 75, 59-67 (1987). Reprinted in Lakhtakia (1990).Google Scholar
- Azzam R.M.A., Ellipsometry, in Handbook of Optics, Bass M. et al ed., Mc Graw-Hill, New York (1995).Google Scholar
- Babinet J., Sur le sens des vibrations dans les rayons polarisés, Comptes Rendus Acad. Sci. Paris 29, 514-515 (1849).Google Scholar
- Bass M. et al ed., Handbook of Optics, McGraw-Hill, Inc., New York (1995).Google Scholar
- Bekers J.M., Achromatic linear retarders, Appl. Opt. 10, 973-975 (1971).ADSCrossRefGoogle Scholar
- Bennett J.M., Polarizer, in Handbook of Optics, Bass M. et al ed., Mc Graw-Hill, New York (1995).Google Scholar
- Berry M.V., Jeffrey M.R., and Lunney J.G., Conical diffraction: observations and theory, Proc. R. Soc. A 462, 1629-1642 (2006).ADSMathSciNetCrossRefGoogle Scholar
- Bhagavantam S., Crystal Symmetry and Physical Properties, Academic Press, New York (1966).Google Scholar
- Bloom A.L., Modes of a laser resonator containing tilted birefringent plates, J. Opt. Soc. Am. 64, 447-452 (1974).ADSCrossRefGoogle Scholar
- Bokut B.V. and Fedorov F.I., On the theory of Optical activity in crystals. III. General equation of normal, Opt. and Spectr. 6, 342-344 (1959).Google Scholar
- Born M., Über die natürliche optische aktivität von flüssigkeiten und gasen, Zeitschrift für Physik 16, 251-258 (1915). On the theory of optical activity, Proc. Royal Soc. A 150, 84-105 (1935). Reprinted in Lakhtakia (1990).Google Scholar
- Born M. and Wolf E., Principles of Optics, Pergamon Press, Paris (1980).Google Scholar
- Bragg W.L. and Pippard A.B., The Form Birefringence of Macromolecules, Acta Cryst. 6, 865-867 (1953).CrossRefGoogle Scholar
- Brand D.J., Molecular structure and chirality, J. Chemical Education 64, 1035-1038 (1987). Reprinted in Lakhtakia (1990).ADSCrossRefGoogle Scholar
- Burns G., Glazer A.M., Space Groups for Solid State Scientists, Academic Press, New York, (1978).Google Scholar
- Caldwell D.J. and Eyring H., The theory of optical activity, John Wiley & Sons, Inc., New York (1971).Google Scholar
- Chandrasekharan V., Damany H., Birefringence of Sapphire, Magnesium Fluoride, and Quartz in the Vacuum Ultraviolet, and Retardation Plates, Appl. Opt. 7, 939-941 (1968).ADSCrossRefGoogle Scholar
- Cheng D.K. and Kong J.A., Time harmonic fields in source free bianisotropic media, J. Appl. Phys. 39, 5792-5796 (1968).ADSCrossRefGoogle Scholar
- Chipman R.A., Polarimetry, in Handbook of Optics, Bass M. et al ed., Mc Graw-Hill, New York (1995).Google Scholar
- Condon E.U., Theories of Optical Rotatory Power, Rev. Mod. Phys. 9, 432-457 (1937). Reprinted in Lakhtakia (1990).ADSCrossRefGoogle Scholar
- Condon E.U., Altar W., and Eyring H., One-Electron Rotatory Power, J. Chem. Phys. 5, 753-775 (1937).ADSCrossRefGoogle Scholar
- Dodge M.J., Refractive properties of magnesium fluoride, Appl. Opt. 23, 1980-1985 (1984).ADSCrossRefGoogle Scholar
- Evans J.W., The birefringent filter, J. Opt. Soc. Am. 39, 229-242 (1949).ADSCrossRefGoogle Scholar
- Fedorov F.I., On the theory of Optical activity in crystals. I. The law of conservation of energy and the Optical activity tensor, Optics and Spectroscopy 6, 49-53 (1959a), Reprinted in Lakhtakia (1990). On the theory of Optical activity in crystals. II. Crystal of cubic symmetry and planar classes of central symmetry, Opt. and Spectr. 6, 237-240 (1959b).Google Scholar
- Feynman R.P., Leighton R.B., Sands M., The Feynman Lectures on Physics, Vol II, Addison-Wesley publishing company, Reading MA (1969).Google Scholar
- Fowles G.R., Introduction to Modern Optics, Holt, Rinehart, and Winston, New York (1968).Google Scholar
- Guenther R., Modern Optics, John Wiley & Sons, New York (1990).Google Scholar
- Hamilton W.R., On some results of the view of a characteristic function in optics, British Association Report, Cambridge 360-370 (1833). Third supplement to an essay on the theory of systems of rays, Trans. Roy. Irish Acad. 17, 1-144 (1837).Google Scholar
- Hammond C., Introduction to crystallography, Oxford University Press, Royal Microscopical Society (1992).Google Scholar
- Hermann C.H. and Mauguin C., International Tables for X-ray Crystallography, Vol I, edited by K. Lonsdale. Birmingham: Kynoch Press (1952). See also the last edition at it.iucr.org: International Tables for Crystallography, Vol. A: Space-group symmetry, edited by Th. Hahn, International Union of Crystallography (2006).Google Scholar
- Hobden M.V., Optical activity in a non-enantiomorphous crystal: AgGaS2, Acta Cryst. A 24, 676-680 (1968).CrossRefGoogle Scholar
- Hodgkinson I.J. and Wu Q.H., Birefringent thin films and polarizing elements, World Scientific Publ. Co. Pte. Ltd., Singapore (1997).Google Scholar
- Hopf F.A. and Stegeman G.I., Applied Classical Electrodynamics, Vol. I: Linear Optics, John Wiley & Sons, New York (1985).Google Scholar
- Huard S., Polarization of Light, John Wiley & Sons, New York, Masson, Paris (1997).Google Scholar
- Jackson J.D., Classical Electrodynamics, John Wiley & Sons, New York (1974).Google Scholar
- Jenkins F.A. and White H.E., Fundamental of Optics, McGraw-Hill (1957).Google Scholar
- Jerphagnon J. and Chemla D.S., Optical activity of crystals, J. Chem. Phys. 65, 1522-1529 (1976).ADSCrossRefGoogle Scholar
- Jones R.C., A new calculus for the treatment of optical system, Part I, J. Opt. Soc. Am. 31, 488-493 (1941a); … Part II, J. Opt. Soc. Am. 31, 500-503 (1941b); … Part III, J. Opt. Soc. Am. 32, 486-493 (1942).Google Scholar
- Kaminow I.P., An introduction to electrooptic devices, Academic Press (1974).Google Scholar
- Kong J.A., Theorems of bianisotropic media, Proc. IEEE 60, 1036-1046 (1972). Reprinted in Lakhtakia (1990).MathSciNetCrossRefGoogle Scholar
- Lakhtakia A., ed., Selected Papers on Natural Optical Activity, SPIE Milestone Series 15, B.J. Thompson gen. ed., SPIE, Bellingham (1990). On the genesis of Post constraint in modern electromagnetism, Optik, Intern. J. for Light and Electron Optics 115, 151-158 (2004).Google Scholar
- Lakhtakia A., Varadan V.V., and Varadan V.K., Field equations, Huygens’s principle, integral equations, and theorems for radiation and scattering of electromagnetic waves in isotropic chiral media, J. Opt. Soc. Am. A 5, 175-184 (1988). Reprinted in Lakhtakia (1990).Google Scholar
- Landau L. and Lifchitz E., (II), Théorie du Champ, MIR, Mosca (1966a). (III), Physique Statistique, MIR, Mosca (1966b). (VIII), Électrodynamique des Milieux Continus, MIR, Mosca (1966c).Google Scholar
- Landsberg G.S., Ottica, MIR, Mosca (1979).Google Scholar
- Lang S., Linear Algebra, Springer-Verlag, New York (1987).Google Scholar
- H. Lloyd, On the phænomena presented by light in its passage along the axes of biaxal crystals, The London and Edinburgh Philosophical Magazine 2, 112-120 (1833).Google Scholar
- Lyot Bernard, Le filtre monochromatique polarizant et ses applications en physique solaire, Annales d’Astrophysique 7, 1-49 (1944).Google Scholar
- Maillard J.P., Direct measurement of the birefringence of quartz at 3.39 and 3.50 μ, Opt. Comm. 4, 175-177 (1971).Google Scholar
- Mason S.F., Optical activity and molecular dissymmetry, Contemp. Phys. 9, 239 (1968).Google Scholar
- Medenbach G. and Shannon R.D., Refractive indices and optical dispersion of 103 synthetic and mineral oxides and silicates measured by a small-prism technique, JOSA B 14, 3299-3318 (1997).Google Scholar
- Medhat M. and El-Zaiat S.Y., Interferometric determination of the birefringence dispersion of anisotropic materials, Optics Comm. 141, 145-149 (1997).ADSCrossRefGoogle Scholar
- Nakano H. and Kimura H., Quantum statistical-mechanical theory of optical activity, J. Phys. Soc. Japan 27, 519-535 (1969). Reprinted in Lakhtakia (1990).ADSCrossRefGoogle Scholar
- Nikogosyan D.N., Properties of Optical and Laser-Related Materials. A Handbook, John Wiley & Sons, New York (1997).Google Scholar
- Öhman Y., A New Monochromator, Nature 141, n°3560, 157-158, and n°3563, 291-291 (1938).Google Scholar
- Pancharatnam, S., Achromatic combinations of birefringent plates, Proceedings of the Indian Academy of Sciences 41, 130 (1955)CrossRefGoogle Scholar
- Peterson R.M., Comparison of two theories of optical activity, Am. J. of Physics 43, 969-972 (1975).ADSCrossRefGoogle Scholar
- Poggendorff J.C., Ueber die konische refraction, Ann. der Physik 129, 461-462 (1839).ADSCrossRefGoogle Scholar
- Post E.J., Formal structure of electromagnetics, (North-Holland, Amsterdam, 1962). Partially reprinted in Lakhtakia (1990).Google Scholar
- Potton R.J., Reciprocity in optics, Reports on Progress in Physics 67, 717-754 (2004).ADSCrossRefGoogle Scholar
- Pujol M.C. et al, Growth, optical characterization, and laser operation of a stoichiometric crystal KYb(WO4)2, Phys. Rev. B 65, 165121 (2002).Google Scholar
- Roberts N.W., Chiou T.-H., Marshall N.J. and Cronin T.W., A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region, Nature Photonics 3, 641-644 (2009).ADSCrossRefGoogle Scholar
- Robinson C.C., The Faraday Rotation of Diamagnetic Glasses from 0.334 μ to 1.9 μ, Appl. Optics 3, 1163-1166 (1964).Google Scholar
- Shields J.H. and Ellis J.W., Dispersion of Birefringence of Quartz in the Near Infrared, J. Opt. Soc. Am. 46, 363-365 (1956).ADSCrossRefGoogle Scholar
- Silverman M.P., Reflection and refraction at the surface of a chiral medium: comparison of gyrotropic constitutive relations invariant or noninvariant under a duality transformation, J. Opt. Soc. Am. A 3, 830-837 (1986). Reprinted in Lakhtakia (1990).Google Scholar
- Silverman M.P. and Badoz J., Light reflection from a naturally active birefringent medium, J. Opt. Soc. Am. A 7, 1163-1173 (1990).ADSCrossRefGoogle Scholar
- Silverman M.P., Ritchie N., Cushman G.M., and Fischer B., Experimental configurations using optical phase modulation to measure chiral asymmetries in light specularly reflected from a naturally gyrotropic medium, J. Opt. Soc. Am. A 5, 1852-1862 (1988).ADSCrossRefGoogle Scholar
- Sivoukhine D., Optique, MIR, Mosca (1984).Google Scholar
- Smartt R.N. and Steel W.H., Birefringence of Quartz and Calcite, J. Opt. Soc. Am. 49, 710-712 (1959).ADSCrossRefGoogle Scholar
- Soleil J.B., Nouvel appareil propre ä la mesure des deviations dans les experiences de polarisation rotatoire, C. R. Acad. Sci. (Paris) 21, 426-430 (1845); Note sur un perfectionnement apporté au pointage du saccharimètre, C. R. Acad. Sci. (Paris) 24, 973-975 (1847).Google Scholar
- Sommerfeld A., Optics, Academic Press, New York (1949).Google Scholar
- Strumia F., Appunti di conduzione elettrica nei gas, Cap. IV - I filtri. Università degli Studi di Pisa, (a.a. 1973-1974).Google Scholar
- Tellegen B.D.H., The gyrator, a new electric network element, Phillips Research Report 3, 81-101 (1948). Reprinted in Lakhtakia (1990).Google Scholar
- Tinoco I. and Freeman M., The optical activity of oriented copper helices, I, experimental, J. Physical Chemistry 61, 1196-1200 (1957). Reprinted in Lakhtakia (1990).CrossRefGoogle Scholar
- Van Kranendonk J. and Sipe J.E., Foundation of the macroscopic electromagnetic theory of dielectric media, in Progress in Optics XV, 245-356, E. Wolf ed., North-Holland Publishing Company, Amsterdam (1977).Google Scholar
- Villaverde A.B. et al, Terbium gallium garnet Verdet constant measurements with pulsed magnetic field, J. Phys. C: Solid State Physics 11, L495-498 (1978).ADSCrossRefGoogle Scholar
- Voigt W., Bemerkung zur theorie der konischen refraktion, Phys. Z. 6, 672-673 (1905). Ueber die Wellen flaeche zweiachsiger aktiver kristalle und ueber ihre konische refraktion, Phys. Z. 6, 787-790 (1905).Google Scholar
- von Haidinger W., Die konische Refraction am Diopsid, nebst Bemerkungen über einige Erscheinungen der konischen Refraction am Arragonit, Annalen Physik 172, 469-487 (1855).ADSCrossRefGoogle Scholar
- Wiener O., Allgemeine Sätze über die Dielektrizitätskonstanten der Mischkörper, Abh. Sächs. Ges. Akad. Wiss., Math. Phys. Kl. 6, 574-584 (1912).Google Scholar
- Williams P.A. et al, Temperature dependence of the Verdet constant in several diamagnetic glasses, Appl. Optics 30, 1176-1178 (1991).Google Scholar
- Wood E.A., Crystals and Light, Dover Publications, Inc., New York (1977).Google Scholar
- Yariv A. and Yeh P., Optical waves in crystals, John Wiley, New Jersey (1984).Google Scholar
- Zhong H., Levine Z.H., Allan D.C., Wilkins J.W., Band-theoretic calculations of the optical-activity tenor of α-quartz and trigonal Se, Phys. Rev. B 48, 1384-1402 (1993).ADSCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019