Advertisement

Propagation of Laser Beams in Linear Media

The Gaussian, Bessel, and Bessel-Gauss Approaches
  • Giovanni GiusfrediEmail author
Chapter
Part of the UNITEXT for Physics book series (UNITEXTPH)

Abstract

If the medium is homogeneous, linear, isotropic, and non-dispersive, any electromagnetic wave can, in principle, be decomposed into plane waves, which are a simple and effective basis for complex wave equation solutions (1.4.12). But, in real cases, we have to deal with electromagnetic beams of limited size, and the decomposition in plane waves is not always the most appropriate. Consider, for example, the case of a monochromatic, and therefore continuous (CW, that is, continuous wave, single-frequency) laser beam; at every point in the space, its electric field oscillates sinusoidally over time. The spatial trend in this field is not equally simple: at first sight, a collimated laser beam is a genuinely good representation of a pencil of parallel geometric rays between them, but, with more careful observation, we find that the beam tends to expand due to the diffraction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

328216_1_En_6_MOESM1_ESM.txt (3 kb)
Supplementary material 1 (TXT 2 kb)
328216_1_En_6_MOESM2_ESM.zip (1.1 mb)
Supplementary material 2 (ZIP 1133 kb)
328216_1_En_6_MOESM3_ESM.zip (685 kb)
Supplementary material 3 (ZIP 684 kb)
328216_1_En_6_MOESM4_ESM.zip (734 kb)
Supplementary material 4 (ZIP 734 kb)
328216_1_En_6_MOESM5_ESM.zip (6 kb)
Supplementary material 5 (ZIP 6 kb)

Bibliographical references

  1. Abramowitz M. and Stegun I.A., Handbook of Mathematical Functions, Dover Publications Inc., New York (1972).Google Scholar
  2. Allen L. M., Beijersbergen W., Spreeuw R.J.C., and Woerdman J.P., Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes, Phys. Rev A 45, 8185-8189 (1992).ADSCrossRefGoogle Scholar
  3. Anan’ev Y.A., Laser resonator and the beam resonance problem, Hadam Hilger, Bristol, IOP publishing Ltd (1992).Google Scholar
  4. Arlt J. and Dholakia K., Generation of high-order Bessel beam by use of an axicon, Opt. Comm. 177, 297-301 (2000).ADSCrossRefGoogle Scholar
  5. Arnaud J.A., Nonorthogonal Optical Waveguides and Resonators, The Bell System Technical Journal 49, 2311-2348 (November 1970).MathSciNetCrossRefGoogle Scholar
  6. Arnaud J.A. and Kogelnik H., Gaussian Light Beams with General Astigmatism, Appl. Optics 8, 1687-1693 (1969).ADSCrossRefGoogle Scholar
  7. Bagini V., Frezza F., Santarsiero M., Schettini G., and Schirripa Spagnolo G., Generalized Bessel-Gauss Beams, J. of Mod. Optics 43, 1155-1166 (1996).ADSMathSciNetzbMATHGoogle Scholar
  8. Boyd G.D. and Gordon J.P., Confocal Multimode Resonator for Millimeter Through Optical Wavelength Masers, Bell. Syst. Tech. J. 40, 489-508 (1961).CrossRefGoogle Scholar
  9. Boyd G.D. and Kogelnik H., Generalized Confocal Resonator Theory, Bell. Syst. Tech. J. 41, 1347-1369 (1962).CrossRefGoogle Scholar
  10. Bradley D.J. and Mitchell C.J., Characteristics of the defocused spherical Fabry-Perot interferometer as a quasi-linear dispersion instrument for high resolution spectroscopy of pulsed laser sources, Phil. Trans. R. Soc. A 263, 209-223 (1968).Google Scholar
  11. Collins Stuart A. Jr., Analysis of Optical Resonators Involving Focusing Elements, Appl. Opt. 3, 1263-1275 (1964). Lens-System Diffraction Integral Written in Terms of Matrix Optics, J. Opt. Soc. Am. 60, 1168-1177 (1970).Google Scholar
  12. Collins R.J., Nelson D.F., Schawlow A.L., Bond W., Garrett C.G.B., and Kaiser W., Coherence, Narrowing, Directionality, and Relaxation Oscillations in the Light Emission from Ruby, Phys. Rev. Lett. 5, 303-305 (1960).ADSCrossRefGoogle Scholar
  13. Connes P., Augmentation du produit luminosité × résolution des interféromètres par l’emploi d’une différence de marche indépendante de l’incidence, Revue Opt. 35, 37- 43 (1956). L’étalon Fabry-Perot sphérique, J. Phys. Radium 19, 262-269 (1958).Google Scholar
  14. Dingjan J., Multi-mode optical resonators and wave chaos, Thesis, Leiden University (2003), accessibile da http://iop.hqu.edu.cn/uploadfile/20111229162543941.pdf.Google Scholar
  15. Durnin J., Exact solution for nondiffracting beams. I. The scalar theory, J. Opt. Soc. Am. A 4, 651-654 (1987).ADSCrossRefGoogle Scholar
  16. Durnin J., Miceli J.J. Jr, and Eberly J.H., Diffraction-Free Beams, Phys. Rev. Lett. 58, 1499-1451 (1987).Google Scholar
  17. Fox A.G. and Li T., Resonant Modes in a Maser Interferometer, Bell. Syst. Tech. J. 40, 453-488 (1961).CrossRefGoogle Scholar
  18. Gori F., Guattari G. and Padovani C., Bessel-Gauss Beams, Opt. Comm. 64, 491-495 (1987).ADSCrossRefGoogle Scholar
  19. Guenther R., Modern Optics, John Wiley & Sons, New York (1990).Google Scholar
  20. Herriott D., Kogelnik H., and Kompfner R., Off-axis paths in spherical mirror interferometers, Applied Optics 3, 523-526 (1964).ADSCrossRefGoogle Scholar
  21. Iizuka K., Engineering Optics, Springer-Verlag, Berlino (1987).Google Scholar
  22. Kogelnik H., On the Propagation of Gaussian Beams of Light Through Lenslike Media Including those with a Loss or Gain Variation, Appl. Optics 4, 1562-1569 (1965a). Imaging of Optical Modes - Resonators with Internal Lenses, Bell. Syst. Tech. J. 44, 455-494 (1965b).Google Scholar
  23. Kogelnik H. and Li T., Laser Beams and Resonators, Appl. Opt. 5, 1550-1567 (1966a). Proc. IEEE 54, 1312-1320 (1966b).Google Scholar
  24. Maiman T.H., Stimulated optical radiation in ruby, Nature 187, 493-494 (1960a). Optical and microwave-optical experiments in ruby, Phys. Rev. Lett. 4, 564-566 (1960b).Google Scholar
  25. McLeod J.H., The axicon: a new type of optical element, J. Opt. Soc. Am. 44, 592-597 (1953).Google Scholar
  26. Piccirillo B., Slussarenko S., Marrucci L., and Santamato E., The orbital angular momentum of light: genesis and evolution of the concept and of the associated photonic technology. Rivista del Nuovo Cimento 36, 501-554 (2013).Google Scholar
  27. Popov M.M., Resonators for lasers with unfolded directions of principal curvatures, Opt. Spectrosc. 25, 231-217 (1968); Resonators for lasers with rotated directions of principal curvatures, Opt. Spectrosc. 25, 170-171 (1968).Google Scholar
  28. Prokhorov A.M., Molecular amplifier and generator for submillimeter waves, Sov. Phys. JETP 7, 1140-1141 (1958).Google Scholar
  29. Santarsiero M., Propagation of generalized Bessel-Gauss beams through ABCD optical Systems, Opt. Comm. 132, 1-7 (1996).Google Scholar
  30. Schawlow A.L. and Townes C.H., Infrared and optical maser, Phys. Rev. 112, 1940-1949 (1958).ADSCrossRefGoogle Scholar
  31. Scott G. and McArdle N., Efficient generation of nearly diffraction-free beams using an axicon, Opt. Engineering 31, 2640-2643 (1992).Google Scholar
  32. Siegman A.E., Unstable optical resonator for laser application, Proc. IEEE 53, 277-287 (1965). Lasers, University Science Books, Mill Valley, California (1986).Google Scholar
  33. Solimeno S., Crosignani B., Di Porto P., Guiding, Diffraction, and Confinement of Optical Radiation, Academic Press, inc., Orlando (1986).Google Scholar
  34. Suematsu Y. and Fukinuki H., Matrix theory of light beam waveguides, Bull. Tokyo Inst. Technol. 88, 33-47 (1968).Google Scholar
  35. Vasara A., Turunen J., and Friberg A.T., Realization of general nondiffracting beams with computer-generated holograms, J. Opt. Soc. Am. A 6, 1748-1754 (1989).ADSCrossRefGoogle Scholar
  36. Vaughan J.M., The Fabry-Perot Interferometer, A. Hilger, Bristol (1989).Google Scholar
  37. Weinstein L.A., Otkrytyye Rezonatory i otkrytyye volnovody (Moskow: Sovetskoye Radio, 1966); Open resonators and open waveguide, Golem Press (1969).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.European Laboratory for Non-Linear Spectroscopy (LENS)Istituto Nazionale di Ottica—Consiglio Nazionale delle Ricerche (INO-CNR)Sesto FiorentinoItaly

Personalised recommendations