Advertisement

The Causal Relationship Between Returns and Trading Volume in Cryptocurrency Markets: Recursive Evolving Approach

  • Efe Caglar CagliEmail author
Chapter
Part of the Contributions to Economics book series (CE)

Abstract

This chapter examines the time-varying causal relationship between trading volume and returns in cryptocurrency markets. The chapter employs a novel Granger causality framework based on a recursive evolving window procedure. The procedures allow detecting changes in causal relationships among time series by considering potential conditional heteroskedasticity and structural shifts through recursive subsampling. The chapter analyzes the return-volume relationship for Bitcoin and seven other altcoins: Dash, Ethereum, Litecoin, Nem, Stellar, Monero, and Ripple. The results suggest rejecting the null hypothesis of no causality, indicating bi-directional causality between trading volume and returns for Bitcoin and the altcoins except Nem and Stellar. The findings also highlight that the causal relations in cryptocurrency markets are subject to change over time. The chapter may conclude that trading volume has predictive power on returns in cryptocurrency markets, implying potential benefits of constructing volume-based trading strategies for investors and considering trading volume information in developing pricing models to determine the fundamental value of the cryptocurrencies.

References

  1. Aalborg, H. A., Molnár, P., & de Vries, J. E. (2018). What can explain the price, volatility and trading volume of bitcoin? Finance Research Letters, 29, 255–265.  https://doi.org/10.1016/J.FRL.2018.08.010 CrossRefGoogle Scholar
  2. Al-Yahyaee, K. H., Mensi, W., & Yoon, S.-M. (2018). Efficiency, multifractality, and the long-memory property of the bitcoin market: A comparative analysis with stock, currency, and gold markets. Finance Research Letters, 27, 228–234.  https://doi.org/10.1016/J.FRL.2018.03.017 CrossRefGoogle Scholar
  3. Balcilar, M., Bouri, E., Gupta, R., & Roubaud, D. (2017). Can volume predict bitcoin returns and volatility? A quantiles-based approach. Economic Modelling, 64, 74–81.  https://doi.org/10.1016/J.ECONMOD.2017.03.019 CrossRefGoogle Scholar
  4. Bariviera, A. F. (2017). The inefficiency of bitcoin revisited: A dynamic approach. Economics Letters, 161, 1–4.  https://doi.org/10.1016/J.ECONLET.2017.09.013 CrossRefGoogle Scholar
  5. Baur, D. G., & Dimpfl, T. (2018). Price discovery in bitcoin spot or futures? SSRN.  https://doi.org/10.2139/ssrn.3171464
  6. Becker, J., Breuker, D., Heide, T., Holler, J., Rauer, H. P., & Böhme, R. (2013). Can we afford integrity by proof-of-work? Scenarios inspired by the bitcoin currency. In The economics of information security and privacy (pp. 135–156). Berlin, Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-39498-0_7 CrossRefGoogle Scholar
  7. Beneki, C., Koulis, A., Kyriazis, N. A., & Papadamou, S. (2019). Investigating volatility transmission and hedging properties between bitcoin and Ethereum. Research in International Business and Finance, 48, 219–227.  https://doi.org/10.1016/J.RIBAF.2019.01.001 CrossRefGoogle Scholar
  8. Böhme, R., Christin, N., Edelman, B., & Moore, T. (2015). Bitcoin: Economics, technology, and governance. Journal of Economic Perspectives, 29(2), 213–238.  https://doi.org/10.1257/jep.29.2.213 CrossRefGoogle Scholar
  9. Bouoiyour, J., & Refk, S. (2015). What does bitcoin look like? Annals of Economics and Finance, 16(2), 449–192. Retrieved from http://aeconf.com/Articles/Nov2015/aef160211.pdf Google Scholar
  10. Bouri, E., Gupta, R., Tiwari, A. K., & Roubaud, D. (2017). Does bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions. Finance Research Letters, 23, 87–95.  https://doi.org/10.1016/J.FRL.2017.02.009 CrossRefGoogle Scholar
  11. Bouri, E., Jalkh, N., Molnár, P., & Roubaud, D. (2017). Bitcoin for energy commodities before and after the December 2013 crash: Diversifier, hedge or safe haven? Applied Economics, 49(50), 1–11.  https://doi.org/10.1080/00036846.2017.1299102 CrossRefGoogle Scholar
  12. Bouri, E., Lau, C. K. M., Lucey, B., & Roubaud, D. (2018). Trading volume and the predictability of return and volatility in the cryptocurrency market. Finance Research Letters., 29, 340–346.  https://doi.org/10.1016/j.frl.2018.08.015 CrossRefGoogle Scholar
  13. Bouri, E., Molnár, P., Azzi, G., Roubaud, D., & Hagfors, L. I. (2017). On the hedge and safe haven properties of bitcoin: Is it really more than a diversifier? Finance Research Letters, 20, 192–198.  https://doi.org/10.1016/J.FRL.2016.09.025 CrossRefGoogle Scholar
  14. Brandvold, M., Molnár, P., Vagstad, K., & Andreas Valstad, O. C. (2015). Price discovery on bitcoin exchanges. Journal of International Financial Markets, Institutions and Money, 36, 18–35.  https://doi.org/10.1016/J.INTFIN.2015.02.010 CrossRefGoogle Scholar
  15. Brauneis, A., & Mestel, R. (2018). Price discovery of cryptocurrencies: Bitcoin and beyond. Economics Letters, 165, 58–61.  https://doi.org/10.1016/J.ECONLET.2018.02.001 CrossRefGoogle Scholar
  16. Brière, M., Oosterlinck, K., & Szafarz, A. (2015). Virtual currency, tangible return: Portfolio diversification with bitcoin. Journal of Asset Management, 16(6), 365–373.  https://doi.org/10.1057/jam.2015.5 CrossRefGoogle Scholar
  17. Cagli, E. C. (2018). Explosive behavior in the prices of bitcoin and altcoins. Finance Research Letters., 29, 398–403.  https://doi.org/10.1016/j.frl.2018.09.007 CrossRefGoogle Scholar
  18. Cheah, E.-T., & Fry, J. (2015). Speculative bubbles in bitcoin markets? An empirical investigation into the fundamental value of bitcoin. Economics Letters, 130, 32–36.  https://doi.org/10.1016/J.ECONLET.2015.02.029 CrossRefGoogle Scholar
  19. Cheung, A., Roca, E., & Su, J.-J. (2015). Crypto-currency bubbles: An application of the Phillips–Shi–Yu (2013) methodology on Mt. Gox bitcoin prices. Applied Economics, 47(23), 2348–2358.  https://doi.org/10.1080/00036846.2015.1005827 CrossRefGoogle Scholar
  20. Ciaian, P., Rajcaniova, M., & Kancs, D. (2016). The economics of BitCoin price formation. Applied Economics, 48(19), 1799–1815.  https://doi.org/10.1080/00036846.2015.1109038 CrossRefGoogle Scholar
  21. Clark, P. K. (1973). A subordinated stochastic process model with finite variance for speculative prices. Econometrica, 41(1), 135–155.  https://doi.org/10.2307/1913889 CrossRefGoogle Scholar
  22. Copeland, T. E. (1976). A model of asset trading under the assumption of sequential information arrival. The Journal of Finance, 31(4), 1149–1168.  https://doi.org/10.1111/j.1540-6261.1976.tb01966.x CrossRefGoogle Scholar
  23. Copeland, T. E. (1977). A probability model of asset trading. The Journal of Financial and Quantitative Analysis, 12(4), 563–578.  https://doi.org/10.2307/2330332 CrossRefGoogle Scholar
  24. Corbet, S., Lucey, B., & Yarovaya, L. (2018). Datestamping the bitcoin and Ethereum bubbles. Finance Research Letters, 26, 81–88.  https://doi.org/10.1016/j.frl.2017.12.006 CrossRefGoogle Scholar
  25. Corbet, S., Meegan, A., Larkin, C., Lucey, B., & Yarovaya, L. (2018). Exploring the dynamic relationships between cryptocurrencies and other financial assets. Economics Letters, 165, 28–34.  https://doi.org/10.1016/J.ECONLET.2018.01.004 CrossRefGoogle Scholar
  26. Crouch, R. L. (1970). The volume of transactions and price changes on the New York stock exchange. Financial Analysts Journal, 26(4), 104–109.CrossRefGoogle Scholar
  27. De Long, J. B., Shleifer, A., Summers, L. H., & Waldmann, R. J. (1990). Noise trader risk in financial markets. Journal of Political Economy, 98(4), 703–738.  https://doi.org/10.1086/261703 CrossRefGoogle Scholar
  28. Demir, E., Gozgor, G., Lau, C. K. M., & Vigne, S. A. (2018). Does economic policy uncertainty predict the bitcoin returns? An empirical investigation. Finance Research Letters, 26, 145–149.  https://doi.org/10.1016/j.frl.2018.01.005 CrossRefGoogle Scholar
  29. Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427–431.  https://doi.org/10.2307/2286348 CrossRefGoogle Scholar
  30. Dwyer, G. P. (2015). The economics of bitcoin and similar private digital currencies. Journal of Financial Stability, 17, 81–91.  https://doi.org/10.1016/J.JFS.2014.11.006 CrossRefGoogle Scholar
  31. Dyhrberg, A. H. (2016). Bitcoin, gold and the dollar – A GARCH volatility analysis. Finance Research Letters, 16, 85–92.  https://doi.org/10.1016/J.FRL.2015.10.008 CrossRefGoogle Scholar
  32. El Alaoui, M., Bouri, E., & Roubaud, D. (2018). Bitcoin price–volume: A multifractal cross-correlation approach. Finance Research Letters.  https://doi.org/10.1016/J.FRL.2018.12.011
  33. Epps, T. W., & Epps, M. L. (1976). The stochastic dependence of security price changes and transaction volumes: Implications for the mixture-of-distributions hypothesis. Econometrica, 44(2), 305–321.  https://doi.org/10.2307/1912726 CrossRefGoogle Scholar
  34. Feng, W., Wang, Y., & Zhang, Z. (2018). Can cryptocurrencies be a safe haven: A tail risk perspective analysis. Applied Economics, 50(44), 4745–4762.  https://doi.org/10.1080/00036846.2018.1466993 CrossRefGoogle Scholar
  35. Fry, J., & Cheah, E.-T. (2016). Negative bubbles and shocks in cryptocurrency markets. International Review of Financial Analysis, 47, 343–352.  https://doi.org/10.1016/J.IRFA.2016.02.008 CrossRefGoogle Scholar
  36. Gallant, A. R., Rossi, P. E., & Tauchen, G. (1992). Stock prices and volume. Review of Financial Studies, 5(2), 199–242.  https://doi.org/10.1093/rfs/5.2.199 CrossRefGoogle Scholar
  37. Garcia, D., Tessone, C. J., Mavrodiev, P., & Perony, N. (2014). The digital traces of bubbles: Feedback cycles between socio-economic signals in the bitcoin economy. Journal of the Royal Society Interface, 11(99), 20140623.  https://doi.org/10.1098/rsif.2014.0623 CrossRefGoogle Scholar
  38. Gebka, B. (2012). The dynamic relation between returns, trading volume, and volatility: Lessons from spillovers between Asia and the United States. Bulletin of Economic Research, 64(1), 65–90.  https://doi.org/10.1111/j.1467-8586.2010.00371.x CrossRefGoogle Scholar
  39. Gebka, B., & Wohar, M. E. (2013). Causality between trading volume and returns: Evidence from quantile regressions. International Review of Economics & Finance, 27, 144–159.  https://doi.org/10.1016/J.IREF.2012.09.009 CrossRefGoogle Scholar
  40. Glaser, F., Zimmermann, K., Haferkorn, M., Weber, M. C., & Siering, M. (2014). Bitcoin - asset or currency? Revealing users’ hidden intentions. In Twenty second European conference on information systems (pp. 1–14). Tel Aviv. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2425247 Google Scholar
  41. Harris, L. (1986). Cross-security tests of the mixture of distributions hypothesis. The Journal of Financial and Quantitative Analysis, 21(1), 39–46.  https://doi.org/10.2307/2330989 CrossRefGoogle Scholar
  42. Harris, M., & Raviv, A. (1993). Differences of opinion make a horse race. Review of Financial Studies, 6(3), 473–506.  https://doi.org/10.1093/rfs/6.3.473 CrossRefGoogle Scholar
  43. He, H., & Wang, J. (1995). Differential information and dynamic behavior of stock trading volume. Review of Financial Studies, 8(4), 919–972.  https://doi.org/10.1093/rfs/8.4.919 CrossRefGoogle Scholar
  44. Hiemstra, C., & Jones, J. D. (1994). Testing for linear and nonlinear granger causality in the stock price-volume relation testing for linear and nonlinear granger causality in the stock price-volume relation. The Journal of Finance, 49(5), 1639–1664.  https://doi.org/10.1111/j.1540-6261.1994.tb04776.x CrossRefGoogle Scholar
  45. Jennings, R. H., Starks, L. T., & Fellingham, J. C. (1981). An equilibrium model of asset trading with sequential information arrival. The Journal of Finance, 36(1), 143–161.  https://doi.org/10.1111/j.1540-6261.1981.tb03540.x CrossRefGoogle Scholar
  46. Jiang, Y., Nie, H., & Ruan, W. (2018). Time-varying long-term memory in bitcoin market. Finance Research Letters, 25, 280–284.  https://doi.org/10.1016/j.frl.2017.12.009 CrossRefGoogle Scholar
  47. Kandel, E., & Pearson, N. D. (1995). Differential interpretation of public signals and trade in speculative markets. Journal of Political Economy, 103(4), 831–872.  https://doi.org/10.1086/262005 CrossRefGoogle Scholar
  48. Kapar, B., & Olmo, J. (2019). An analysis of price discovery between bitcoin futures and spot markets. Economics Letters, 174, 62–64.  https://doi.org/10.1016/J.ECONLET.2018.10.031 CrossRefGoogle Scholar
  49. Karpoff, J. M. (1987). The relation between price changes and trading volume: A survey. The Journal of Financial and Quantitative Analysis, 22(1), 109–126.  https://doi.org/10.2307/2330874 CrossRefGoogle Scholar
  50. Kokkinaki, A., Sapuric, S., & Georgiou, I. (2019). The relationship between bitcoin trading volume, volatility, and returns: A study of four seasons. In M. Themistocleous & P. R. da Cunha (Eds.), 15th European, Mediterranean, and Middle Eastern Conference, EMCIS (Vol. 2018, pp. 3–15). Limassol, Cyprus: Springer.  https://doi.org/10.1007/978-3-030-11395-7_1 CrossRefGoogle Scholar
  51. Koutmos, D. (2018). Bitcoin returns and transaction activity. Economics Letters, 167, 81–85.  https://doi.org/10.1016/J.ECONLET.2018.03.021 CrossRefGoogle Scholar
  52. Kristoufek, L. (2013). BitCoin meets Google trends and Wikipedia: Quantifying the relationship between phenomena of the Internet era. Scientific Reports, 3(3415), 1–7. Retrieved from https://www.nature.com/articles/srep03415%3FWT.ec_id%3DSREP-20131210 Google Scholar
  53. Kristoufek, L. (2015). What are the main drivers of the bitcoin price? Evidence from wavelet coherence analysis. PLoS One, 10(4), e0123923.  https://doi.org/10.1371/journal.pone.0123923 CrossRefGoogle Scholar
  54. Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica, 53(6), 1315–1335.  https://doi.org/10.2307/1913210 CrossRefGoogle Scholar
  55. Lakonishok, J., & Smidt, S. (1989). Past price changes and current trading volume. The Journal of Portfolio Management, 15(4), 18–24.  https://doi.org/10.3905/jpm.1989.409223 CrossRefGoogle Scholar
  56. Llorente, G., Michaely, R., Saar, G., & Wang, J. (2002). Dynamic volume-return relation of individual stocks. Review of Financial Studies, 15(4), 1005–1047.  https://doi.org/10.1093/rfs/15.4.1005 CrossRefGoogle Scholar
  57. Nadarajah, S., & Chu, J. (2017). On the inefficiency of bitcoin. Economics Letters, 150, 6–9.  https://doi.org/10.1016/J.ECONLET.2016.10.033 CrossRefGoogle Scholar
  58. Pagnottoni, P., Dimpfl, T., & Baur, D. (2018). Price discovery on bitcoin markets. SSRN Electronic Journal.  https://doi.org/10.2139/ssrn.3280261
  59. Panagiotidis, T., Stengos, T., & Vravosinos, O. (2018). On the determinants of bitcoin returns: A LASSO approach. Finance Research Letters, 27, 235–240.  https://doi.org/10.1016/j.frl.2018.03.016 CrossRefGoogle Scholar
  60. Phillips, P. C. B., Shi, S., & Yu, J. (2015). Testing for multiple bubbles: Historical episodes of exuberance and collapse in the S&P 500. International Economic Review, 56(4), 1043–1078.  https://doi.org/10.1111/iere.12132 CrossRefGoogle Scholar
  61. Plassaras, N. A. (2013). Regulating digital currencies: Bringing bitcoin within the reach of the IMF. Chicago Journal of International Law, 14(1), 377–407.Google Scholar
  62. Rogojanu, A., & Badea, L. (2014). The issue of competing currencies. Case study-bitcoin. Theoretical & Applied Economics, 21(1), 103–114.Google Scholar
  63. Sadeghi, A.-R. (Ed.). (2013). Financial cryptography and data security (Vol. 7859). Berlin, Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-39884-1 CrossRefGoogle Scholar
  64. Schneider, J. (2009). A rational expectations equilibrium with informative trading volume. The Journal of Finance, 64(6), 2783–2805.  https://doi.org/10.1111/j.1540-6261.2009.01517.x CrossRefGoogle Scholar
  65. Sensoy, A. (2018). The inefficiency of bitcoin revisited: A high-frequency analysis with alternative currencies. Finance Research Letters, 28, 68–73.  https://doi.org/10.1016/J.FRL.2018.04.002 CrossRefGoogle Scholar
  66. Shahzad, S. J. H., Bouri, E., Roubaud, D., Kristoufek, L., & Lucey, B. (2019). Is bitcoin a better safe-haven investment than gold and commodities? International Review of Financial Analysis., 63, 322–330.  https://doi.org/10.1016/J.IRFA.2019.01.002 CrossRefGoogle Scholar
  67. Shi, S., Phillips, P. C. B., & Hurn, S. (2018). Change detection and the causal impact of the yield curve. Journal of Time Series Analysis, 39(6), 966–987.  https://doi.org/10.1111/jtsa.12427 CrossRefGoogle Scholar
  68. Stosic, D., Stosic, D., Ludermir, T. B., & Stosic, T. (2019). Multifractal behavior of price and volume changes in the cryptocurrency market. Physica A: Statistical Mechanics and Its Applications, 520, 54–61.  https://doi.org/10.1016/J.PHYSA.2018.12.038 CrossRefGoogle Scholar
  69. Swanson, N. R. (1998). Money and output viewed through a rolling window. Journal of Monetary Economics, 41(3), 455–474.  https://doi.org/10.1016/S0304-3932(98)00005-1 CrossRefGoogle Scholar
  70. Tauchen, G. E., & Pitts, M. (1983). The price variability-volume relationship on speculative markets. Econometrica, 51(2), 485–505.  https://doi.org/10.2307/1912002 CrossRefGoogle Scholar
  71. Thoma, M. A. (1994). Subsample instability and asymmetries in money-income causality. Journal of Econometrics, 64(1–2), 279–306.  https://doi.org/10.1016/0304-4076(94)90066-3 CrossRefGoogle Scholar
  72. Tiwari, A. K., Jana, R. K., Das, D., & Roubaud, D. (2018). Informational efficiency of bitcoin—An extension. Economics Letters, 163, 106–109.  https://doi.org/10.1016/J.ECONLET.2017.12.006 CrossRefGoogle Scholar
  73. Urquhart, A. (2016). The inefficiency of bitcoin. Economics Letters, 148, 80–82.  https://doi.org/10.1016/J.ECONLET.2016.09.019 CrossRefGoogle Scholar
  74. van Wijk, D. (2013). What can be expected from the BitCoin (no. 345986). Rotterdam.Google Scholar
  75. Vidal-Tomás, D., & Ibañez, A. (2018). Semi-strong efficiency of bitcoin. Finance Research Letters, 27, 259–265.  https://doi.org/10.1016/J.FRL.2018.03.013 CrossRefGoogle Scholar
  76. Yermack, D. (2015). Is bitcoin a real currency? An economic appraisal. In D. K. C. Lee (Ed.), Handbook of digital currency (pp. 31–43). London: Academic.  https://doi.org/10.1016/B978-0-12-802117-0.00002-3 CrossRefGoogle Scholar
  77. Ying, C. C. (1966). Stock market prices and volumes of sales. Econometrica, 34(3), 676–685.  https://doi.org/10.2307/1909776 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of BusinessDokuz Eylul UniversityIzmirTurkey

Personalised recommendations