Skip to main content

Towards CFD-Based Aeroelastic Analysis of NLF Wings

  • Conference paper
  • First Online:
New Results in Numerical and Experimental Fluid Mechanics XII (DGLR 2018)

Abstract

The effect of Natural Laminar Flow (NLF) on the aeroelastic behavior of transport aircraft wings is widely unknown. This numerical study investigates the influence of boundary layer transition on the unsteady aerodynamic response of an NLF test case, the DLR-F5 wing. State-of-the-art RANS methods for transition prediction are compared at wind tunnel and free-flight conditions. A more critical flutter behavior is indicated in the case of transitional flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tichy, L., Mai, H., Fehrs, M., Hebler, A.: Risk analysis for flutter of laminar wings. In: 17th International Forum on Aeroelasticity and Structural Dynamics, IFASD, Como, Italy (2017)

    Google Scholar 

  2. Fehrs, M.: Boundary layer transition in external aerodynamics and dynamic aeroelastic stability. Dissertation, Technische Universität Carolo-Wilhelmina zu Braunschweig, Braunschweig, Germany (2018). ISSN 1434-8454, ISRN DLR-FB–2018-11, also NFL-FB 2017-27

    Google Scholar 

  3. Fehrs, M., van Rooij, A.C.L.M., Nitzsche, J.: Influence of boundary layer transition on the flutter behavior of a supercritical airfoil. CEAS Aeronaut. J. 6(2), 291–303 (2015)

    Article  Google Scholar 

  4. Hebler, A.: Experimental assessment of the flutter stability of a laminar airfoil in transonic flow. In: 17th International Forum on Aeroelasticity and Structural Dynamics, IFASD, Como, Italy (2017)

    Google Scholar 

  5. Krumbein, A., Krimmelbein, N., Schrauf, G.: Automatic transition prediction in hybrid flow solver, part 1: methodology and sensitivities. J. Aircr. 46(4), 1176–1190 (2009)

    Article  Google Scholar 

  6. Krumbein, A., Krimmelbein, N., Schrauf, G.: Automatic transition prediction in hybrid flow solver, part 2: practical application. J. Aircr. 46(4), 1191–1199 (2009)

    Article  Google Scholar 

  7. Langtry, R.B., Menter, F.R.: Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 47(12), 2894–2906 (2009)

    Article  Google Scholar 

  8. Seyfert, C., Krumbein, A.: Evaluation of a correlation-based transition model and comparison with the \(e^N\) method. J. Aircr. 49(6), 1765–1773 (2012)

    Article  Google Scholar 

  9. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)

    Article  Google Scholar 

  10. Kaiser, C., Thormann, R., Dimitrov, D., Nitzsche, J.: Time-linearized analysis of motion-induced and gust-induced airloads with the DLR TAU Code. Deutscher Luft- und Raumfahrtkongress 2015, Rostock, Germany (2015)

    Google Scholar 

  11. Langtry, R.B.: A correlation-based transition model using local variables for unstructured parallelized CFD codes. Ph.D. Dissertation, University Stuttgart, Stuttgart (2006)

    Google Scholar 

  12. Nie, S.: Extension of transition modeling by a transport equation approach. Ph.D. Dissertation, Technische Universität Carolo-Wilhelmina zu Braunschweig, Braunschweig, Germany (2017)

    Google Scholar 

  13. Sobieczky, H.: DLR-F5: test wing for CFD and applied aerodynamics. In: A Selection of Experimental Test Cases for the Validation of CFD Code, AGARD-AR-303, Québec, Canada, vol. II (1994)

    Google Scholar 

  14. Sobieczky, H., Hefer, G., Tusche, S.: DFVLR - F5 test wing experiment for computational aerodynamics. In: 5th Applied Aerodynamics Conference, AIAA-Paper 87, Monterey, CA, USA, pp. 479–487 (1987)

    Google Scholar 

  15. Sobieczky, H.: DFVLR-F5 test wing configuration - the boundary value problem. In: Kordulla, W. (ed.) Notes on Numerical Fluid Mechanics, vol. 22. Vieweg, Braunschweig (1988)

    Google Scholar 

  16. Bendiksen, O.O.: Review of unsteady transonic aerodynamics: theory and applications. Prog. Aerosp. Sci. 47, 135–167 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Helm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Helm, S., Fehrs, M., Nitzsche, J. (2020). Towards CFD-Based Aeroelastic Analysis of NLF Wings. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C., Tropea, C., Jakirlić, S. (eds) New Results in Numerical and Experimental Fluid Mechanics XII. DGLR 2018. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 142. Springer, Cham. https://doi.org/10.1007/978-3-030-25253-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25253-3_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25252-6

  • Online ISBN: 978-3-030-25253-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics