Advertisement

Vascular Dysfunction and Neurodegenerative Disease

  • Zhongbao Gao
  • Eugene M. Cilento
  • Tessandra Stewart
  • Jing ZhangEmail author
Chapter

Abstract

The brain is the most metabolically active and complex organ in the human body, consisting of nearly 100 billion neurons and with over 100 trillion intricate connections. In order to maintain its intensive metabolic demands, the brain is highly vascularized, with nearly every neuron possessing its own capillary and total capillary length of nearly 400 miles. The integrity of the cerebral vascular system is accomplished through a vast vascular network of arteries, arterioles, capillaries, and veins which assure the continuous supply of oxygen and nutrients as well as provide a pathway for washing out metabolic waste products. Structural and functional integrity of blood vessels for adequate blood supply delivery is essential to maintain normal neurological function. A healthy neuronal-vascular relationship is critical for proper neurological processing, and vascular insults can consequentially initiate a cascade of molecular events which ultimately may result in neurodegeneration. Deterioration of brain functionality occurs progressively with advancing age, and an aged brain is consequently highly prone to neurodegenerative disorders. With increasing awareness of the importance of the neurovascular contribution to neurodegenerative disease, a better understanding of the contributory pathophysiological mechanisms is necessary. This chapter will cover the link between neurovascular dysfunction and neurodegeneration.

Keyword

Neurodegeneration Dementia Neurovascular unit Blood-brain barrier Vascular factors 

References

  1. 1.
    Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017;96(1):17–42.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Snyder HM, Corriveau RA, Craft S, et al. Vascular contributions to cognitive impairment and dementia including Alzheimer's disease. Alzheimers Dement. 2015;11(6):710–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Korczyn AD. Vascular parkinsonism--characteristics, pathogenesis and treatment. Nat Rev Neurol. 2015;11(6):319–26.PubMedCrossRefGoogle Scholar
  4. 4.
    Winkler EA, Sengillo JD, Sullivan JS, Henkel JS, Appel SH, Zlokovic BV. Blood-spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol. 2013;125(1):111–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Kalaria RN, Maestre GE, Arizaga R, et al. Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol. 2008;7(9):812–26.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet. 2001;357(9251):169–75.Google Scholar
  7. 7.
    Bailey TL, Rivara CB, Rocher AB, Hof PR. The nature and effects of cortical microvascular pathology in aging and Alzheimer's disease. Neurol Res. 2004;26(5):573–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier. Prog Drug Res Fortschritte der Arzneimittelforschung Progres des recherches pharmaceutiques. 2003;61:39–78.PubMedGoogle Scholar
  9. 9.
    Zlokovic BV. Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci. 2005;28(4):202–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13–25.PubMedCrossRefGoogle Scholar
  11. 11.
    Daneman R, Engelhardt B. Brain barriers in health and disease. Neurobiol Dis. 2017;107:1–3.PubMedCrossRefGoogle Scholar
  12. 12.
    Golding EM, Marrelli SP, You J, Bryan RM Jr. Endothelium-derived hyperpolarizing factor in the brain: a new regulator of cerebral blood flow? Stroke. 2002;33(3):661–3.PubMedCrossRefGoogle Scholar
  13. 13.
    Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 2009;335(1):75–96.PubMedCrossRefGoogle Scholar
  14. 14.
    Oberheim NA, Takano T, Han X, et al. Uniquely hominid features of adult human astrocytes. J Neurosci. 2009;29(10):3276–87.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.PubMedCrossRefGoogle Scholar
  16. 16.
    Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10(11):1369–76.PubMedCrossRefGoogle Scholar
  17. 17.
    Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science. 2009;323(5918):1211–5.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bonkowski D, Katyshev V, Balabanov RD, Borisov A, Dore-Duffy P. The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS. 2011;8(1):8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci. 2011;14(11):1398–405.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Cheslow L, Alvarez JI. Glial-endothelial crosstalk regulates blood-brain barrier function. Curr Opin Pharmacol. 2016;26:39–46.PubMedCrossRefGoogle Scholar
  21. 21.
    Yousif LF, Di Russo J, Sorokin L. Laminin isoforms in endothelial and perivascular basement membranes. Cell Adhes Migr. 2013;7(1):101–10.CrossRefGoogle Scholar
  22. 22.
    Morris AW, Carare RO, Schreiber S, Hawkes CA. The cerebrovascular basement membrane: role in the clearance of beta-amyloid and cerebral amyloid angiopathy. Front Aging Neurosci. 2014;6:251.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Owens T, Bechmann I, Engelhardt B. Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol. 2008;67(12):1113–21.PubMedCrossRefGoogle Scholar
  24. 24.
    Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol. 2011;71(11):1018–39.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015;7(1):a020412.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Erickson MA, Banks WA. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease. J Cereb Blood Flow Metab. 2013;33(10):1500–13.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Zenaro E, Piacentino G, Constantin G. The blood-brain barrier in Alzheimer's disease. Neurobiol Dis. 2017;107:41–56.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67(2):181–98.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Enager P, Piilgaard H, Offenhauser N, et al. Pathway-specific variations in neurovascular and neurometabolic coupling in rat primary somatosensory cortex. J Cereb Blood Flow Metab. 2009;29(5):976–86.PubMedCrossRefGoogle Scholar
  30. 30.
    Wells JA, Christie IN, Hosford PS, et al. A critical role for purinergic signalling in the mechanisms underlying generation of BOLD fMRI responses. J Neurosci. 2015;35(13):5284–92.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Zacchigna S, Lambrechts D, Carmeliet P. Neurovascular signalling defects in neurodegeneration. Nat Rev Neurosci. 2008;9(3):169–81.PubMedCrossRefGoogle Scholar
  32. 32.
    Sorond FA, Hurwitz S, Salat DH, Greve DN, Fisher ND. Neurovascular coupling, cerebral white matter integrity, and response to cocoa in older people. Neurology. 2013;81(10):904–9.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sorond FA, Kiely DK, Galica A, et al. Neurovascular coupling is impaired in slow walkers: the MOBILIZE Boston study. Ann Neurol. 2011;70(2):213–20.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    van Beek AH, Claassen JA, Rikkert MG, Jansen RW. Cerebral autoregulation: an overview of current concepts and methodology with special focus on the elderly. J Cereb Blood Flow Metab. 2008;28(6):1071–85.PubMedCrossRefGoogle Scholar
  35. 35.
    Jessen SB, Mathiesen C, Lind BL, Lauritzen M. Interneuron deficit associates attenuated network synchronization to mismatch of energy supply and demand in aging mouse brains. Cereb Cortex. 2017;27(1):646–59.PubMedCrossRefGoogle Scholar
  36. 36.
    Wei YH, Lu CY, Wei CY, Ma YS, Lee HC. Oxidative stress in human aging and mitochondrial disease-consequences of defective mitochondrial respiration and impaired antioxidant enzyme system. Chin J Physiol. 2001;44(1):1–11.PubMedGoogle Scholar
  37. 37.
    Sheng ZH. Mitochondrial trafficking and anchoring in neurons: new insight and implications. J Cell Biol. 2014;204(7):1087–98.PubMedCrossRefGoogle Scholar
  38. 38.
    Toth P, Tarantini S, Tucsek Z, et al. Resveratrol treatment rescues neurovascular coupling in aged mice: role of improved cerebromicrovascular endothelial function and downregulation of NADPH oxidase. Am J Physiol Heart Circ Physiol. 2014;306(3):H299–308.PubMedCrossRefGoogle Scholar
  39. 39.
    Deane R, Du Yan S, Submamaryan RK, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med. 2003;9(7):907–13.PubMedCrossRefGoogle Scholar
  40. 40.
    Kalaria RN, Akinyemi R, Ihara M. Does vascular pathology contribute to Alzheimer changes? J Neurol Sci. 2012;322(1–2):141–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Bell RD, Deane R, Chow N, et al. SRF and myocardin regulate LRP-mediated amyloid-beta clearance in brain vascular cells. Nat Cell Biol. 2009;11(2):143–53.PubMedCrossRefGoogle Scholar
  42. 42.
    Cirrito JR, Deane R, Fagan AM, et al. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest. 2005;115(11):3285–90.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Toledo JB, Arnold SE, Raible K, et al. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer's coordinating Centre. Brain. 2013;136(Pt 9):2697–706.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Weller RO, Boche D, Nicoll JA. Microvasculature changes and cerebral amyloid angiopathy in Alzheimer's disease and their potential impact on therapy. Acta Neuropathol. 2009;118(1):87–102.PubMedCrossRefGoogle Scholar
  45. 45.
    Montagne A, Zhao Z, Zlokovic BV. Alzheimer's disease: a matter of blood-brain barrier dysfunction? J Exp Med. 2017;214(11):3151–69.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hirao K, Ohnishi T, Hirata Y, et al. The prediction of rapid conversion to Alzheimer’s disease in mild cognitive impairment using regional cerebral blood flow SPECT. NeuroImage. 2005;28(4):1014–21.PubMedCrossRefGoogle Scholar
  47. 47.
    Johnson NA, Jahng GH, Weiner MW, et al. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology. 2005;234(3):851–9.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ledo A, Lourenco CF, Laranjinha J, Brett CM, Gerhardt GA, Barbosa RM. Ceramic-based multisite platinum microelectrode arrays: morphological characteristics and electrochemical performance for extracellular oxygen measurements in brain tissue. Anal Chem. 2017;89(3):1674–83.PubMedCrossRefGoogle Scholar
  49. 49.
    Lourenco CF, Ledo A, Barbosa RM, Laranjinha J. Neurovascular uncoupling in the triple transgenic model of Alzheimer's disease: impaired cerebral blood flow response to neuronal-derived nitric oxide signaling. Exp Neurol. 2017;291:36–43.PubMedCrossRefGoogle Scholar
  50. 50.
    Li L, Zhang X, Yang D, Luo G, Chen S, Le W. Hypoxia increases Abeta generation by altering beta- and gamma-cleavage of APP. Neurobiol Aging. 2009;30(7):1091–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Thomas T, Thomas G, McLendon C, Sutton T, Mullan M. beta-Amyloid-mediated vasoactivity and vascular endothelial damage. Nature. 1996;380(6570):168–71.PubMedCrossRefGoogle Scholar
  52. 52.
    Sutton ET, Hellermann GR, Thomas T. beta-amyloid-induced endothelial necrosis and inhibition of nitric oxide production. Exp Cell Res. 1997;230(2):368–76.PubMedCrossRefGoogle Scholar
  53. 53.
    Launer LJ, Andersen K, Dewey ME, et al. Rates and risk factors for dementia and Alzheimer's disease: results from EURODEM pooled analyses. EURODEM Incidence Research Group and Work Groups. European Studies of Dementia. Neurology. 1999;52(1):78–84.PubMedCrossRefGoogle Scholar
  54. 54.
    Petrovitch H, White LR, Izmirilian G, et al. Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: the HAAS. Honolulu-Asia aging Study. Neurobiol Aging. 2000;21(1):57–62.PubMedCrossRefGoogle Scholar
  55. 55.
    Becker C, Jick SS, Meier CR. Risk of stroke in patients with idiopathic Parkinson disease. Parkinsonism Relat Disord. 2010;16(1):31–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Huang TL, Zandi PP, Tucker KL, et al. Benefits of fatty fish on dementia risk are stronger for those without APOE epsilon4. Neurology. 2005;65(9):1409–14.PubMedCrossRefGoogle Scholar
  57. 57.
    de Laat KF, van Norden AG, Gons RA, et al. Cerebral white matter lesions and lacunar infarcts contribute to the presence of mild parkinsonian signs. Stroke. 2012;43(10):2574–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Hatate J, Miwa K, Matsumoto M, et al. Association between cerebral small vessel diseases and mild parkinsonian signs in the elderly with vascular risk factors. Parkinsonism Relat Disord. 2016;26:29–34.PubMedCrossRefGoogle Scholar
  59. 59.
    Schwartz RS, Halliday GM, Cordato DJ, Kril JJ. Small-vessel disease in patients with Parkinson's disease: a clinicopathological study. Mov Disord. 2012;27(12):1506–12.PubMedCrossRefGoogle Scholar
  60. 60.
    Jellinger KA. Prevalence of cerebrovascular lesions in Parkinson's disease. A postmortem study. Acta Neuropathol. 2003;105(5):415–9.PubMedGoogle Scholar
  61. 61.
    Hong CT, Hu HH, Chan L, Bai CH. Prevalent cerebrovascular and cardiovascular disease in people with Parkinson's disease: a meta-analysis. Clin Epidemiol. 2018;10:1147–54.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Liang CL, Wang TT, Luby-Phelps K, German DC. Mitochondria mass is low in mouse substantia nigra dopamine neurons: implications for Parkinson's disease. Exp Neurol. 2007;203(2):370–80.PubMedCrossRefGoogle Scholar
  63. 63.
    Palikaras K, Tavernarakis N. Mitophagy in neurodegeneration and aging. Front Genet. 2012;3:297.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Gredilla R, Bohr VA, Stevnsner T. Mitochondrial DNA repair and association with aging--an update. Exp Gerontol. 2010;45(7–8):478–88.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Takahashi M, Ko LW, Kulathingal J, Jiang P, Sevlever D, Yen SH. Oxidative stress-induced phosphorylation, degradation and aggregation of alpha-synuclein are linked to upregulated CK2 and cathepsin D. Eur J Neurosci. 2007;26(4):863–74.PubMedCrossRefGoogle Scholar
  66. 66.
    Wei X, Yan R, Chen Z, et al. Combined diffusion tensor imaging and arterial spin labeling as markers of early Parkinson's disease. Sci Rep. 2016;6:33762.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Al-Bachari S, Parkes LM, Vidyasagar R, et al. Arterial spin labelling reveals prolonged arterial arrival time in idiopathic Parkinson's disease. Neuroimage Clin. 2014;6:1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Vokatch N, Grotzsch H, Mermillod B, Burkhard PR, Sztajzel R. Is cerebral autoregulation impaired in Parkinson's disease? A transcranial Doppler study. J Neurol Sci. 2007;254(1–2):49–53.PubMedCrossRefGoogle Scholar
  69. 69.
    Rodriguez M, Morales I, Rodriguez-Sabate C, et al. The degeneration and replacement of dopamine cells in Parkinson's disease: the role of aging. Front Neuroanat. 2014;8:80.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Rappold PM, Tieu K. Astrocytes and therapeutics for Parkinson's disease. Neurotherapeutics. 2010;7(4):413–23.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Drinkut A, Tereshchenko Y, Schulz JB, Bahr M, Kugler S. Efficient gene therapy for Parkinson's disease using astrocytes as hosts for localized neurotrophic factor delivery. Mol Ther. 2012;20(3):534–43.PubMedCrossRefGoogle Scholar
  72. 72.
    Baltazar MT, Dinis-Oliveira RJ, de Lourdes BM, Tsatsakis AM, Duarte JA, Carvalho F. Pesticides exposure as etiological factors of Parkinson's disease and other neurodegenerative diseases--a mechanistic approach. Toxicol Lett. 2014;230(2):85–103.PubMedCrossRefGoogle Scholar
  73. 73.
    Leonardi A, Abbruzzese G, Arata L, Cocito L, Vische M. Cerebrospinal fluid (CSF) findings in amyotrophic lateral sclerosis. J Neurol. 1984;231(2):75–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Annunziata P, Volpi N. High levels of C3c in the cerebrospinal fluid from amyotrophic lateral sclerosis patients. Acta Neurol Scand. 1985;72(1):61–4.PubMedCrossRefGoogle Scholar
  75. 75.
    Donnenfeld H, Kascsak RJ, Bartfeld H. Deposits of IgG and C3 in the spinal cord and motor cortex of ALS patients. J Neuroimmunol. 1984;6(1):51–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Miyazaki K, Ohta Y, Nagai M, et al. Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J Neurosci Res. 2011;89(5):718–28.PubMedCrossRefGoogle Scholar
  77. 77.
    Garbuzova-Davis S, Saporta S, Sanberg PR. Implications of blood-brain barrier disruption in ALS. Amyotroph Lateral Scler. 2008;9(6):375–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Blann AD, Woywodt A, Bertolini F, et al. Circulating endothelial cells. Biomarker of vascular disease. Thromb Haemost. 2005;93(2):228–35.PubMedCrossRefGoogle Scholar
  79. 79.
    Garbuzova-Davis S, Woods RL 3rd, Louis MK, et al. Reduction of circulating endothelial cells in peripheral blood of ALS patients. PLoS One. 2010;5(5):e10614.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Robberecht W. Oxidative stress in amyotrophic lateral sclerosis. J Neurol. 2000;247(Suppl 1):I1–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Pun PB, Lu J, Moochhala S. Involvement of ROS in BBB dysfunction. Free Radic Res. 2009;43(4):348–64.PubMedCrossRefGoogle Scholar
  82. 82.
    Morris MC, Evans DA, Bienias JL, Tangney CC, Wilson RS. Vitamin E and cognitive decline in older persons. Arch Neurol. 2002;59(7):1125–32.PubMedCrossRefGoogle Scholar
  83. 83.
    Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson RS. Fish consumption and cognitive decline with age in a large community study. Arch Neurol. 2005;62(12):1849–53.PubMedCrossRefGoogle Scholar
  84. 84.
    Kidd PM. Alzheimer's disease, amnestic mild cognitive impairment, and age-associated memory impairment: current understanding and progress toward integrative prevention. Altern Med Rev. 2008;13(2):85–115.Google Scholar
  85. 85.
    Joseph JA, Shukitt-Hale B, Willis LM. Grape juice, berries, and walnuts affect brain aging and behavior. J Nutr. 2009;139(9):1813S–7S.PubMedCrossRefGoogle Scholar
  86. 86.
    Rovio S, Spulber G, Nieminen LJ, et al. The effect of midlife physical activity on structural brain changes in the elderly. Neurobiol Aging. 2010;31(11):1927–36.PubMedCrossRefGoogle Scholar
  87. 87.
    Podewils LJ, Guallar E, Kuller LH, et al. Physical activity, APOE genotype, and dementia risk: findings from the Cardiovascular Health Cognition Study. Am J Epidemiol. 2005;161(7):639–51.PubMedCrossRefGoogle Scholar
  88. 88.
    Scarmeas N, Luchsinger JA, Schupf N, et al. Physical activity, diet, and risk of Alzheimer disease. JAMA. 2009;302(6):627–37.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Zhongbao Gao
    • 1
  • Eugene M. Cilento
    • 2
  • Tessandra Stewart
    • 2
  • Jing Zhang
    • 2
    Email author
  1. 1.Department of HealthcareSecond Medical Center, Chinese PLA General HospitalBeijingChina
  2. 2.Department of PathologyUniversity of Washington, School of MedicineSeattleUSA

Personalised recommendations