Advertisement

Toxin-Antitoxin Systems and Persistence

  • Nathan Fraikin
  • Frédéric Goormaghtigh
  • Laurence Van MelderenEmail author
Chapter

Abstract

Toxin-antitoxin (TA) systems are small genetic modules comprising a stable toxic protein and an antitoxin preventing the toxin activity. In type II TA systems, antitoxins are unstable proteins that are degraded by host ATP-dependent proteases. In steady-state conditions, the antitoxin forms a complex with the toxin in which the toxic activity is inactivated, this complex also being responsible for negative autoregulation of the system. Environmental or physiological conditions generating a imbalanced toxin:antitoxin ratio should induce TA systems and halt cell growth. Persistence has been linked to type II TA systems activation in Escherichia coli K-12 via a complex regulatory cascade involving antitoxin degradation by the Lon protease, polyphosphate, and (p)ppGpp. However, this model has been recently disproved questioning the involvement of type II TA systems in persistence, at least in the E. coli K-12 model. In this chapter, we discuss the relevant data linking type II TA systems and persistence in E. coli and other bacterial species.

Notes

Acknowledgements

Research in the Van Melderen lab is supported by the Fonds National de la Recherche Scientifique (FNRS, T.0147.15F PDR and J.0061.16F CDR), the Fonds Jean Brachet and the Fondation Van Buuren.

References

  1. Afif, H., Allali, N., Couturier, M., & Van Melderen, L. (2001). The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison-antidote system. Molecular Microbiology, 41, 73–82.CrossRefGoogle Scholar
  2. Anantharaman, V., & Aravind, L. (2003). New connections in the prokaryotic toxin-antitoxin network: Relationship with the eukaryotic nonsense-mediated RNA decay system. Genome Biology, 4, R81.  https://doi.org/10.1186/gb-2003-4-12-r81 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andersen, S. B., Ghoul, M., Griffin, A. S., Petersen, B., Johansen, H. K., & Molin, S. (2017). Diversity, prevalence, and longitudinal occurrence of type II toxin-antitoxin systems of Pseudomonas aeruginosa infecting cystic fibrosis lungs. Frontiers in Microbiology, 8, 1180.  https://doi.org/10.3389/fmicb.2017.01180 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science, 305, 1622–1625.  https://doi.org/10.1126/science.1099390 CrossRefGoogle Scholar
  5. Battesti, A., Majdalani, N., & Gottesman, S. (2011). The RpoS-mediated general stress response in Escherichia coli. Annual Review of Microbiology, 65, 189–213.  https://doi.org/10.1146/annurev-micro-090110-102946 CrossRefPubMedGoogle Scholar
  6. Bernier, S. P., Lebeaux, D., DeFrancesco, A. S., Valomon, A., Soubigou, G., Coppée, J.-Y., Ghigo, J.-M., & Beloin, C. (2013). Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genetics, 9, e1003144.  https://doi.org/10.1371/journal.pgen.1003144 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bernstein, J. A., Khodursky, A. B., Lin, P.-H., Lin-Chao, S., & Cohen, S. N. (2002). Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proceedings of the National Academy of Sciences, 99, 9697.  https://doi.org/10.1073/pnas.112318199 CrossRefGoogle Scholar
  8. Black, D. S., Kelly, A. J., Mardis, M. J., & Moyed, H. S. (1991). Structure and organization of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. Journal of Bacteriology, 173, 5732.  https://doi.org/10.1128/jb.173.18.5732-5739.1991 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Black, D. S., Irwin, B., & Moyed, H. S. (1994). Autoregulation of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. Journal of Bacteriology, 176, 4081.  https://doi.org/10.1128/jb.176.13.4081-4091.1994 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bordes, P., Cirinesi, A.-M., Ummels, R., Sala, A., Sakr, S., Bitter, W., & Genevaux, P. (2011). SecB-like chaperone controls a toxin–antitoxin stress-responsive system in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences, 108, 8438.  https://doi.org/10.1073/pnas.1101189108 CrossRefGoogle Scholar
  11. Butt, A., Higman, V. A., Williams, C., Crump, M. P., Hemsley, C. M., Harmer, N., & Titball, R. W. (2014). The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation. The Biochemical Journal, 459, 333.  https://doi.org/10.1042/BJ20140073 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Castro-Roa, D., Garcia-Pino, A., De Gieter, S., van Nuland, N. A. J., Loris, R., & Zenkin, N. (2013). The fic protein doc uses an inverted substrate to phosphorylate and inactivate EF-Tu. Nature Chemical Biology, 9, 811–817.  https://doi.org/10.1038/nchembio.1364 CrossRefPubMedGoogle Scholar
  13. Chan, K., Kim, C. C., & Falkow, S. (2005). Microarray-based detection of Salmonella enterica Serovar typhimurium transposon mutants that cannot survive in macrophages and mice. Infection and Immunity, 73, 5438.  https://doi.org/10.1128/IAI.73.9.5438-5449.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cheverton, A. M., Gollan, B., Przydacz, M., Wong, C. T., Mylona, A., Hare, S. A., & Helaine, S. (2016). A Salmonella toxin promotes persister formation through acetylation of tRNA. Molecular Cell, 63, 86–96.  https://doi.org/10.1016/j.molcel.2016.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chowdhury, N., Kwan, B. W., & Wood, T. K. (2016). Persistence increases in the absence of the alarmone guanosine tetraphosphate by reducing cell growth. Scientific Reports, 6, 20519.  https://doi.org/10.1038/srep20519 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Christensen, S. K., & Gerdes, K. (2003). RelE toxins from bacteria and archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Molecular Microbiology, 48, 1389–1400.  https://doi.org/10.1046/j.1365-2958.2003.03512.x CrossRefPubMedGoogle Scholar
  17. Christensen, S. K., Mikkelsen, M., Pedersen, K., & Gerdes, K. (2001). RelE, a global inhibitor of translation, is activated during nutritional stress. Proceedings of the National Academy of Sciences of the United States of America, 98, 14328–14333.  https://doi.org/10.1073/pnas.251327898 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Christensen, S. K., Pedersen, K., Hansen, F. G., & Gerdes, K. (2003). Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. Journal of Molecular Biology, 332, 809–819.CrossRefGoogle Scholar
  19. Christensen, S. K., Maenhaut-Michel, G., Mine, N., Gottesman, S., Gerdes, K., & Van Melderen, L. (2004). Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: Involvement of the yefM-yoeB toxin-antitoxin system. Molecular Microbiology, 51, 1705–1717.CrossRefGoogle Scholar
  20. Christensen-Dalsgaard, M., Jorgensen, M. G., & Gerdes, K. (2010). Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Molecular Microbiology, 75, 333–348.  https://doi.org/10.1111/j.1365-2958.2009.06969.x CrossRefPubMedGoogle Scholar
  21. Claudi, B., Spröte, P., Chirkova, A., Personnic, N., Zankl, J., Schürmann, N., Schmidt, A., & Bumann, D. (2014). Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell, 158, 722–733.  https://doi.org/10.1016/j.cell.2014.06.045 CrossRefGoogle Scholar
  22. Conlon, B. P., Rowe, S. E., Gandt, A. B., Nuxoll, A. S., Donegan, N. P., Zalis, E. A., Clair, G., Adkins, J. N., Cheung, A. L., & Lewis, K. (2016). Persister formation in Staphylococcus aureus is associated with ATP depletion. Nature Microbiology, 1, 16051.CrossRefGoogle Scholar
  23. Culviner, P. H., & Laub, M. T. (2018). Global analysis of the E. coli toxin MazF reveals widespread cleavage of mRNA and the inhibition of rRNA maturation and ribosome biogenesis. Molecular Cell, 70, 868–880.e10.  https://doi.org/10.1016/j.molcel.2018.04.026 CrossRefPubMedGoogle Scholar
  24. De Groote, V. N., Verstraeten, N., Fauvart, M., Kint, C. I., Verbeeck, A. M., Beullens, S., Cornelis, P., & Michiels, J. (2009). Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening. FEMS Microbiology Letters, 297, 73–79.  https://doi.org/10.1111/j.1574-6968.2009.01657.x CrossRefPubMedGoogle Scholar
  25. de la Hoz, A. B., Ayora, S., Sitkiewicz, I., Fernandez, S., Pankiewicz, R., Alonso, J. C., & Ceglowski, P. (2000). Plasmid copy-number control and better-than-random segregation genes of pSM19035 share a common regulator. Proceedings of the National Academy of Sciences of the United States of America, 97, 728–733.CrossRefGoogle Scholar
  26. Deter, S. H., Jensen, V. R., Mather, H. W., & Butzin, C. N. (2017). Mechanisms for differential protein production in toxin–antitoxin systems. Toxins, 9.  https://doi.org/10.3390/toxins9070211 CrossRefGoogle Scholar
  27. Dorr, T., Vulic, M., & Lewis, K. (2010). Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biology, 8, e1000317.  https://doi.org/10.1371/journal.pbio.1000317 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dufour, D., Mankovskaia, A., Chan, Y., Motavaze, K., Gong, S.-G., & Lévesque, C. M. (2018). A tripartite toxin-antitoxin module induced by quorum sensing is associated with the persistence phenotype in Streptococcus mutans. Molecular Oral Microbiology, 33, 420–429.  https://doi.org/10.1111/omi.12245 CrossRefPubMedGoogle Scholar
  29. Escudero, J. A., Loot, C., Nivina, A., & Mazel, D. (2015). The integron: Adaptation on demand. Microbiology Spectrum, 3, MDNA3-0019-2014.  https://doi.org/10.1128/microbiolspec.MDNA3-0019-2014
  30. Falla, T. J., & Chopra, I. (1998). Joint tolerance to β-lactam and fluoroquinolone antibiotics in Escherichia coli results from overexpression of hipA. Antimicrobial Agents and Chemotherapy, 42, 3282.  https://doi.org/10.1128/AAC.42.12.3282 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Garcia-Pino, A., Balasubramanian, S., Wyns, L., Gazit, E., De Greve, H., Magnuson, R. D., Charlier, D., van Nuland, N. A. J., & Loris, R. (2010). Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Cell, 142, 101–111.  https://doi.org/10.1016/j.cell.2010.05.039 CrossRefPubMedGoogle Scholar
  32. Gerdes, K. (2000). Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. Journal of Bacteriology, 182, 561–572.CrossRefGoogle Scholar
  33. Germain, E., Castro-Roa, D., Zenkin, N., & Gerdes, K. (2013). Molecular mechanism of bacterial persistence by HipA. Molecular Cell, 52, 248–254.  https://doi.org/10.1016/j.molcel.2013.08.045 CrossRefPubMedGoogle Scholar
  34. Germain, E., Roghanian, M., Gerdes, K., & Maisonneuve, E. (2015). Stochastic induction of persister cells by HipA through (p)ppGpp-mediated activation of mRNA endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 112, 5171–5176.  https://doi.org/10.1073/pnas.1423536112 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Goormaghtigh, F., Fraikin, N., Putrinš, M., Hallaert, T., Hauryliuk, V., Garcia-Pino, A., Sjödin, A., Kasvandik, S., Udekwu, K., Tenson, T., Kaldalu, N., & Van Melderen, L. (2018a). Reassessing the role of type II toxin-antitoxin systems in formation of Escherichia coli type II Persister cells. mBio, 9.  https://doi.org/10.1128/mBio.00640-18
  36. Goormaghtigh, F., Fraikin, N., Putrinš, M., Hauryliuk, V., Garcia-Pino, A., Udekwu, K., Tenson, T., Kaldalu, N., & Van Melderen, L. (2018b). Reply to Holden and Errington, Type II toxin-antitoxin systems and persister cells. mBio, 9.  https://doi.org/10.1128/mBio.01838-18
  37. Griffin, A. J., Li, L.-X., Voedisch, S., Pabst, O., & McSorley, S. J. (2011). Dissemination of persistent intestinal bacteria via the mesenteric lymph nodes causes typhoid relapse. Infection and Immunity, 79, 1479.  https://doi.org/10.1128/IAI.01033-10 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Guglielmini, J., Szpirer, C., & Milinkovitch, M. C. (2008). Automated discovery and phylogenetic analysis of new toxin-antitoxin systems. BMC Microbiology, 8, 104.  https://doi.org/10.1186/1471-2180-8-104 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hallez, R., Geeraerts, D., Sterckx, Y., Mine, N., Loris, R., & Van Melderen, L. (2010). New toxins homologous to ParE belonging to three-component toxin-antitoxin systems in Escherichia coli O157:H7. Molecular Microbiology, 76, 719–732.  https://doi.org/10.1111/j.1365-2958.2010.07129.x CrossRefPubMedGoogle Scholar
  40. Hansen, S., Lewis, K., & Vulić, M. (2008). Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrobial Agents and Chemotherapy, 52, 2718.  https://doi.org/10.1128/AAC.00144-08 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Harms, A., Maisonneuve, E., & Gerdes, K. (2016). Mechanisms of bacterial persistence during stress and antibiotic exposure. Science, 354.  https://doi.org/10.1126/science.aaf4268 CrossRefGoogle Scholar
  42. Harms, A., Fino, C., Sorensen, M. A., Semsey, S., & Gerdes, K. (2017a). Prophages and growth dynamics confound experimental results with antibiotic-tolerant Persister cells. MBio, 8.  https://doi.org/10.1128/mBio.01964-17
  43. Harms, A., Liesch, M., Körner, J., Québatte, M., Engel, P., & Dehio, C. (2017b). A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella. PLoS Genetics, 13, e1007077.  https://doi.org/10.1371/journal.pgen.1007077 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Harms, A., Brodersen, D. E., Mitarai, N., & Gerdes, K. (2018). Toxins, targets, and triggers: An overview of toxin-antitoxin biology. Molecular Cell, 70, 768–784.  https://doi.org/10.1016/j.molcel.2018.01.003 CrossRefGoogle Scholar
  45. Harrison, J. J., Wade, W. D., Akierman, S., Vacchi-Suzzi, C., Stremick, C. A., Turner, R. J., & Ceri, H. (2009). The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrobial Agents and Chemotherapy, 53, 2253.  https://doi.org/10.1128/AAC.00043-09 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hayes, F., & Van Melderen, L. (2011). Toxins-antitoxins: Diversity, evolution and function. Critical Reviews in Biochemistry and Molecular Biology, 46, 386–408.  https://doi.org/10.3109/10409238.2011.600437 CrossRefPubMedGoogle Scholar
  47. Hazan, R., & Engelberg-Kulka, H. (2004). Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Molecular Genetics and Genomics, 272, 227–234.  https://doi.org/10.1007/s00438-004-1048-y CrossRefPubMedGoogle Scholar
  48. Helaine, S., Cheverton, A. M., Watson, K. G., Faure, L. M., Matthews, S. A., & Holden, D. W. (2014). Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science, 343, 204–208.  https://doi.org/10.1126/science.1244705 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Holden, D. W., & Errington, J. (2018). Type II toxin-antitoxin systems and persister cells. mBio, 9.  https://doi.org/10.1128/mBio.01574-18
  50. Huguet, K. T., Gonnet, M., Doublet, B., & Cloeckaert, A. (2016). A toxin antitoxin system promotes the maintenance of the IncA/C-mobilizable Salmonella Genomic Island 1. Scientific Reports, 6, 32285.  https://doi.org/10.1038/srep32285 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Jaffé, A., Ogura, T., & Hiraga, S. (1985). Effects of the ccd function of the F plasmid on bacterial growth. Journal of Bacteriology, 163, 841.PubMedPubMedCentralGoogle Scholar
  52. Jorgensen, M. G., Pandey, D. P., Jaskolska, M., & Gerdes, K. (2009). HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea. Journal of Bacteriology, 191, 1191–1199.  https://doi.org/10.1128/JB.01013-08 CrossRefPubMedGoogle Scholar
  53. Jurėnaitė, M., Markuckas, A., & Sužiedėlienė, E. (2013). Identification and characterization of type II toxin-antitoxin systems in the opportunistic pathogen Acinetobacter baumannii. Journal of Bacteriology, 195, 3165.  https://doi.org/10.1128/JB.00237-13 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jurenas, D., Chatterjee, S., Konijnenberg, A., Sobott, F., Droogmans, L., Garcia-Pino, A., & Van Melderen, L. (2017). AtaT blocks translation initiation by N-acetylation of the initiator tRNAfMet. Nature Chemical Biology, 13, 640–646.  https://doi.org/10.1038/nchembio.2346 CrossRefPubMedGoogle Scholar
  55. Kaldalu, N., Hauryliuk, V., & Tenson, T. (2016). Persisters-as elusive as ever. Applied Microbiology and Biotechnology, 100, 6545–6553.  https://doi.org/10.1007/s00253-016-7648-8 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kaspy, I., Rotem, E., Weiss, N., Ronin, I., Balaban, N. Q., & Glaser, G. (2013). HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nature Communications, 4, 3001.  https://doi.org/10.1038/ncomms4001 CrossRefPubMedGoogle Scholar
  57. Keren, I., Shah, D., Spoering, A., Kaldalu, N., & Lewis, K. (2004). Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. Journal of Bacteriology, 186, 8172–8180.  https://doi.org/10.1128/JB.186.24.8172-8180.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Keren, I., Minami, S., Rubin, E., & Lewis, K. (2011). Characterization and transcriptome analysis of Mycobacterium tuberculosis Persisters. mBio, 2.  https://doi.org/10.1128/mBio.00100-11
  59. Khodursky, A. B., Peter, B. J., Cozzarelli, N. R., Botstein, D., Brown, P. O., & Yanofsky, C. (2000). DNA microarray analysis of gene expression in response to physiological and genetic changes that affect tryptophan metabolism in Escherichia coli. Proceedings of the National Academy of Sciences, 97, 12170.  https://doi.org/10.1073/pnas.220414297 CrossRefGoogle Scholar
  60. Kim, Y., & Wood, T. K. (2010). Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochemical and Biophysical Research Communications, 391, 209–213.  https://doi.org/10.1016/j.bbrc.2009.11.033 CrossRefPubMedGoogle Scholar
  61. Koga, M., Otsuka, Y., Lemire, S., & Yonesaki, T. (2011). Escherichia coli rnlA and rnlB compose a novel toxin-antitoxin system. Genetics, 187, 123–130.  https://doi.org/10.1534/genetics.110.121798 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Korch, S. B., & Hill, T. M. (2006). Ectopic overexpression of wild-type and mutant hipA genes in Escherichia coli: Effects on macromolecular synthesis and persister formation. Journal of Bacteriology, 188, 3826.  https://doi.org/10.1128/JB.01740-05 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Korch, S. B., Henderson, T. A., & Hill, T. M. (2003). Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Molecular Microbiology, 50, 1199–1213.  https://doi.org/10.1046/j.1365-2958.2003.03779.x CrossRefPubMedGoogle Scholar
  64. Kuroda, A., Murphy, H., Cashel, M., & Kornberg, A. (1997). Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli. The Journal of Biological Chemistry, 272, 21240–21243.  https://doi.org/10.1074/jbc.272.34.21240 CrossRefPubMedGoogle Scholar
  65. Kuroda, A., Nomura, K., Ohtomo, R., Kato, J., Ikeda, T., Takiguchi, N., Ohtake, H., & Kornberg, A. (2001). Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E. coli. Science, 293, 705.  https://doi.org/10.1126/science.1061315 CrossRefPubMedGoogle Scholar
  66. Kwan, B. W., Valenta, J. A., Benedik, M. J., & Wood, T. K. (2013). Arrested protein synthesis increases persister-like cell formation. Antimicrobial Agents and Chemotherapy, 57, 1468–1473.  https://doi.org/10.1128/AAC.02135-12 CrossRefGoogle Scholar
  67. Lawley, T. D., Chan, K., Thompson, L. J., Kim, C. C., Govoni, G. R., & Monack, D. M. (2006). Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathogens, 2, e11.  https://doi.org/10.1371/journal.ppat.0020011 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Lehnherr, H., & Yarmolinsky, M. B. (1995). Addiction protein Phd of plasmid prophage P1 is a substrate of the ClpXP serine protease of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 92, 3274–3277.CrossRefGoogle Scholar
  69. Leplae, R., Geeraerts, D., Hallez, R., Guglielmini, J., Dreze, P., & Van Melderen, L. (2011). Diversity of bacterial type II toxin-antitoxin systems: A comprehensive search and functional analysis of novel families. Nucleic Acids Research, 39, 5513–5525.  https://doi.org/10.1093/nar/gkr131 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Levin-Reisman, I., Ronin, I., Gefen, O., Braniss, I., Shoresh, N., & Balaban, N. Q. (2017). Antibiotic tolerance facilitates the evolution of resistance. Science, 355, 826.  https://doi.org/10.1126/science.aaj2191 CrossRefPubMedGoogle Scholar
  71. Lobato-Marquez, D., Moreno-Cordoba, I., Figueroa, V., Diaz-Orejas, R., & Garcia-del Portillo, F. (2015). Distinct type I and type II toxin-antitoxin modules control Salmonella lifestyle inside eukaryotic cells. Scientific Reports, 5, 9374.  https://doi.org/10.1038/srep09374 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Luidalepp, H., Joers, A., Kaldalu, N., & Tenson, T. (2011). Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence. Journal of Bacteriology, 193, 3598–3605.  https://doi.org/10.1128/JB.00085-11 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Maisonneuve, E., & Gerdes, K. (2014). Molecular mechanisms underlying bacterial persisters. Cell, 157, 539–548.  https://doi.org/10.1016/j.cell.2014.02.050 CrossRefGoogle Scholar
  74. Maisonneuve, E., Shakespeare, L. J., Jorgensen, M. G., & Gerdes, K. (2011). Bacterial persistence by RNA endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 108, 13206–13211.  https://doi.org/10.1073/pnas.1100186108 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Maisonneuve, E., Castro-Camargo, M., & Gerdes, K. (2013). (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell, 154, 1140–1150.  https://doi.org/10.1016/j.cell.2013.07.048 CrossRefPubMedGoogle Scholar
  76. Maisonneuve, E., Castro-Camargo, M., & Gerdes, K. (2018a). Retraction: (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell, 172, 1135.  https://doi.org/10.1016/j.cell.2018.02.023 CrossRefPubMedGoogle Scholar
  77. Maisonneuve, E., Shakespeare, L. J., Jorgensen, M. G., & Gerdes, K. (2018b). Retraction: Bacterial persistence by RNA endonucleases. Proceedings of the National Academy of Sciences of the United States of America.  https://doi.org/10.1073/pnas.1803278115
  78. Mets, T., Lippus, M., Schryer, D., Liiv, A., Kasari, V., Paier, A., Maiväli, Ü., Remme, J., Tenson, T., & Kaldalu, N. (2017). Toxins MazF and MqsR cleave Escherichia coli rRNA precursors at multiple sites. RNA Biology, 14, 124–135.  https://doi.org/10.1080/15476286.2016.1259784 CrossRefPubMedGoogle Scholar
  79. Mine, N., Guglielmini, J., Wilbaux, M., & Van Melderen, L. (2009). The decay of the chromosomally encoded ccdO157 toxin-antitoxin system in the Escherichia coli species. Genetics, 181, 1557–1566.  https://doi.org/10.1534/genetics.108.095190 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Mok, W. W. K., & Brynildsen, M. P. (2018). Timing of DNA damage responses impacts persistence to fluoroquinolones. Proceedings of the National Academy of Sciences, 115, E6301.  https://doi.org/10.1073/pnas.1804218115 CrossRefGoogle Scholar
  81. Molina, L., Udaondo, Z., Duque, E., Fernández, M., Bernal, P., Roca, A., de la Torre, J., & Ramos, J. L. (2016). Specific gene loci of clinical Pseudomonas putida isolates. PLoS One, 11, e0147478.  https://doi.org/10.1371/journal.pone.0147478 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Moyed, H. S., & Bertrand, K. P. (1983). hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. Journal of Bacteriology, 155, 768–775.PubMedPubMedCentralGoogle Scholar
  83. Muñoz-Gómez, A. J., Lemonnier, M., Santos-Sierra, S., Berzal-Herranz, A., & Díaz-Orejas, R. (2005). RNase/anti-RNase activities of the bacterial parD toxin-antitoxin system. Journal of Bacteriology, 187, 3151.  https://doi.org/10.1128/JB.187.9.3151-3157.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Muthuramalingam, M., White, J. C., Murphy, T., Ames, J. R., & Bourne, C. R. (2018). The toxin from a ParDE toxin-antitoxin system found in Pseudomonas aeruginosa offers protection to cells challenged with anti-gyrase antibiotics. Molecular Microbiology.  https://doi.org/10.1111/mmi.14165 CrossRefGoogle Scholar
  85. Norton, J. P., & Mulvey, M. A. (2012). Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli. PLoS Pathogens, 8, e1002954.  https://doi.org/10.1371/journal.ppat.1002954 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Ocampo, P. S., Lázár, V., Papp, B., & Arnoldini, M. (2014). Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrobial Agents and Chemotherapy, 58, 4573–4582.CrossRefGoogle Scholar
  87. Osbourne, D. O., Soo, V. W., Konieczny, I., & Wood, T. K. (2014). Polyphosphate, cyclic AMP, guanosine tetraphosphate, and c-di-GMP reduce in vitro Lon activity. Bioengineered, 5, 264–268.  https://doi.org/10.4161/bioe.29261 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Overgaard, M., Borch, J., Jørgensen, M. G., & Gerdes, K. (2008). Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Molecular Microbiology, 69, 841–857.  https://doi.org/10.1111/j.1365-2958.2008.06313.x CrossRefPubMedGoogle Scholar
  89. Pandey, D. P., & Gerdes, K. (2005). Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Research, 33, 966–976.  https://doi.org/10.1093/nar/gki201 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Pedersen, K., Zavialov, A. V., Pavlov, M. Y., Elf, J., Gerdes, K., & Ehrenberg, M. (2003). The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal a site. Cell, 112, 131–140.CrossRefGoogle Scholar
  91. Potrykus, K., & Cashel, M. (2008). (p)ppGpp: Still magical? Annual Review of Microbiology, 62, 35–51.  https://doi.org/10.1146/annurev.micro.62.081307.162903 CrossRefPubMedGoogle Scholar
  92. Prysak, M. H., Mozdzierz, C. J., Cook, A. M., Zhu, L., Zhang, Y., Inouye, M., & Woychik, N. A. (2009). Bacterial toxin YafQ is an endoribonuclease that associates with the ribosome and blocks translation elongation through sequence-specific and frame-dependent mRNA cleavage. Molecular Microbiology, 71, 1071–1087.  https://doi.org/10.1111/j.1365-2958.2008.06572.x CrossRefPubMedGoogle Scholar
  93. Ramage, H. R., Connolly, L. E., & Cox, J. S. (2009). Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: Implications for pathogenesis, stress responses, and evolution. PLoS Genetics, 5, e1000767.  https://doi.org/10.1371/journal.pgen.1000767 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Ramisetty, B. C., & Santhosh, R. S. (2016). Horizontal gene transfer of chromosomal type II toxin-antitoxin systems of Escherichia coli. FEMS Microbiology Letters, 363.  https://doi.org/10.1093/femsle/fnv238 CrossRefGoogle Scholar
  95. Ramisetty, B. C., Ghosh, D., Roy Chowdhury, M., & Santhosh, R. S. (2016). What is the link between stringent response, endoribonuclease encoding type II toxin-antitoxin systems and persistence? Frontiers in Microbiology, 7, 1882.  https://doi.org/10.3389/fmicb.2016.01882 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Richter-Dahlfors, A., Buchan, A. M. J., & Finlay, B. B. (1997). Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. The Journal of Experimental Medicine, 186, 569.  https://doi.org/10.1084/jem.186.4.569 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Rotem, E., Loinger, A., Ronin, I., Levin-Reisman, I., Gabay, C., Shoresh, N., Biham, O., & Balaban, N. Q. (2010). Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proceedings of the National Academy of Sciences, 107, 12541.  https://doi.org/10.1073/pnas.1004333107 CrossRefGoogle Scholar
  98. Ruiz-Echevarría, M. J., de la Cueva, G., & Díaz-Orejas, R. (1995). Translational coupling and limited degradation of a polycistronic messenger modulate differential gene expression in the parD stability system of plasmid R1. Molecular and General Genetics MGG, 248, 599–609.  https://doi.org/10.1007/BF02423456 CrossRefPubMedGoogle Scholar
  99. Rycroft, J. A., Gollan, B., Grabe, G. J., Hall, A., Cheverton, A. M., Larrouy-Maumus, G., Hare, S. A., & Helaine, S. (2018). Activity of acetyltransferase toxins involved in Salmonella persister formation during macrophage infection. Nature Communications, 9, 1993.  https://doi.org/10.1038/s41467-018-04472-6 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Saavedra De Bast, M., Mine, N., & Van Melderen, L. (2008). Chromosomal toxin-antitoxin systems may act as antiaddiction modules. Journal of Bacteriology, 190, 4603–4609.  https://doi.org/10.1128/JB.00357-08 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Sala, A., Bordes, P., & Genevaux, P. (2014). Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins, 6, 1002–1020.CrossRefGoogle Scholar
  102. Salmon, M. A., Van Melderen, L., Bernard, P., & Couturier, M. (1994). The antidote and autoregulatory functions of the F plasmid CcdA protein: A genetic and biochemical survey. Molecular and General Genetics MGG, 244, 530–538.  https://doi.org/10.1007/BF00583904 CrossRefPubMedGoogle Scholar
  103. Schumacher, M. A., Piro, K. M., Xu, W., Hansen, S., Lewis, K., & Brennan, R. G. (2009). Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science, 323, 396.  https://doi.org/10.1126/science.1163806 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Schumacher, M. A., Balani, P., Min, J., Chinnam, N. B., Hansen, S., Vulić, M., Lewis, K., & Brennan, R. G. (2015). HipBA–promoter structures reveal the basis of heritable multidrug tolerance. Nature, 524, 59.CrossRefGoogle Scholar
  105. Shah, D., Zhang, Z., Khodursky, A., Kaldalu, N., Kurg, K., & Lewis, K. (2006). Persisters: A distinct physiological state of E. coli. BMC Microbiol, 6, 53.  https://doi.org/10.1186/1471-2180-6-53 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Shan, Y., Brown Gandt, A., Rowe, S. E., Deisinger, J. P., Conlon, B. P., & Lewis, K. (2017). ATP-dependent persister formation in Escherichia coli. MBio, 8.  https://doi.org/10.1128/mBio.02267-16
  107. Shao, Y., Harrison, E., Bi, D., Tai, C., He, X., Ou, H., Rajakumar, K., & Deng, Z. (2010). TADB: A web-based resource for type 2 toxin–antitoxin loci in bacteria and archaea. Nucleic Acids Research, 39, D606–D611.  https://doi.org/10.1093/nar/gkq908 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Singh, R., Barry, C. E., & Boshoff, H. I. M. (2010). The three RelE homologs of Mycobacterium tuberculosis have individual, drug-specific effects on bacterial antibiotic tolerance. Journal of Bacteriology, 192, 1279.  https://doi.org/10.1128/JB.01285-09 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Slattery, A., Victorsen, A. H., Brown, A., Hillman, K., & Phillips, G. J. (2013). Isolation of highly persistent mutants of Salmonella enterica Serovar typhimurium reveals a new toxin-antitoxin module. Journal of Bacteriology, 195, 647.  https://doi.org/10.1128/JB.01397-12 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Szekeres, S., Dauti, M., Wilde, C., Mazel, D., & Rowe-Magnus, D. A. (2007). Chromosomal toxin-antitoxin loci can diminish large-scale genome reductions in the absence of selection. Molecular Microbiology, 63, 1588–1605.  https://doi.org/10.1111/j.1365-2958.2007.05613.x CrossRefPubMedGoogle Scholar
  111. Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., Theuretzbacher, U., Magrini, N., Aboderin, A. O., Al-Abri, S. S., Awang Jalil, N., Benzonana, N., Bhattacharya, S., Brink, A. J., Burkert, F. R., Cars, O., Cornaglia, G., Dyar, O. J., Friedrich, A. W., Gales, A. C., Gandra, S., Giske, C. G., Goff, D. A., Goossens, H., Gottlieb, T., Guzman Blanco, M., Hryniewicz, W., Kattula, D., Jinks, T., Kanj, S. S., Kerr, L., Kieny, M.-P., Kim, Y. S., Kozlov, R. S., Labarca, J., Laxminarayan, R., Leder, K., Leibovici, L., Levy-Hara, G., Littman, J., Malhotra-Kumar, S., Manchanda, V., Moja, L., Ndoye, B., Pan, A., Paterson, D. L., Paul, M., Qiu, H., Ramon-Pardo, P., Rodríguez-Baño, J., Sanguinetti, M., Sengupta, S., Sharland, M., Si-Mehand, M., Silver, L. L., Song, W., Steinbakk, M., Thomsen, J., Thwaites, G. E., van der Meer, J. W., Van Kinh, N., Vega, S., Villegas, M. V., Wechsler-Fördös, A., Wertheim, H. F. L., Wesangula, E., Woodford, N., Yilmaz, F. O., & Zorzet, A. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18, 318–327.  https://doi.org/10.1016/S1473-3099(17)30753-3 CrossRefPubMedGoogle Scholar
  112. Theodore, A., Lewis, K., & Vulic, M. (2013). Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific components of the SOS response pathway. Genetics, 195, 1265–1276.  https://doi.org/10.1534/genetics.113.152306 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Tripathi, A., Dewan, P. C., Siddique, S. A., & Varadarajan, R. (2014). MazF-induced growth inhibition and persister generation in Escherichia coli. The Journal of Biological Chemistry, 289, 4191–4205.  https://doi.org/10.1074/jbc.M113.510511 CrossRefPubMedGoogle Scholar
  114. Tsuchimoto, S., & Ohtsubo, E. (1993). Autoregulation by cooperative binding of the PemI and PemK proteins to the promoter region of the pem operon. Molecular & General Genetics, 237, 81–88.Google Scholar
  115. Van Acker, H., Sass, A., Dhondt, I., Nelis, H. J., & Coenye, T. (2014). Involvement of toxin-antitoxin modules in Burkholderia cenocepacia biofilm persistence. Pathogens and Disease, 71, 326–335.  https://doi.org/10.1111/2049-632X.12177 CrossRefPubMedGoogle Scholar
  116. Van Melderen, L., & Wood, T. K. (2017). Commentary: What is the link between stringent response, endoribonuclease encoding type II toxin-antitoxin systems and persistence? Frontiers in Microbiology, 8, 191.  https://doi.org/10.3389/fmicb.2017.00191 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Van Melderen, L., Bernard, P., & Couturier, M. (1994). Lon-dependent proteolysis of CcdA is the key control for activation of CcdB in plasmid-free segregant bacteria. Molecular Microbiology, 11, 1151–1157.CrossRefGoogle Scholar
  118. Vázquez-Laslop, N., Lee, H., & Neyfakh, A. A. (2006). Increased persistence in Escherichia coli caused by controlled expression of toxins or other unrelated proteins. Journal of Bacteriology, 188, 3494–3497.CrossRefGoogle Scholar
  119. Verstraeten, N., Knapen, W. J., Kint, C. I., Liebens, V., Van den Bergh, B., Dewachter, L., Michiels, J. E., Fu, Q., David, C. C., Fierro, A. C., Marchal, K., Beirlant, J., Versées, W., Hofkens, J., Jansen, M., Fauvart, M., & Michiels, J. (2015). Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance. Molecular Cell, 59, 9–21.  https://doi.org/10.1016/j.molcel.2015.05.011 CrossRefGoogle Scholar
  120. Vogwill, T., Comfort, A. C., Furió, V., & MacLean, R. C. (2016). Persistence and resistance as complementary bacterial adaptations to antibiotics. Journal of Evolutionary Biology, 29, 1223–1233.  https://doi.org/10.1111/jeb.12864 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Winther, K. S., & Gerdes, K. (2011). Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. Proceedings of the National Academy of Sciences of the United States of America, 108, 7403–7407.  https://doi.org/10.1073/pnas.1019587108 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Winther, K. S., Brodersen, D. E., Brown, A. K., & Gerdes, K. (2013). VapC20 of Mycobacterium tuberculosis cleaves the sarcin-ricin loop of 23S rRNA. Nature Communications, 4, 2796.  https://doi.org/10.1038/ncomms3796 CrossRefPubMedGoogle Scholar
  123. Wozniak, R. A., & Waldor, M. K. (2009). A toxin-antitoxin system promotes the maintenance of an integrative conjugative element. PLoS Genetics, 5, e1000439.  https://doi.org/10.1371/journal.pgen.1000439 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Yao, X., Chen, T., Shen, X., Zhao, Y., Wang, M., Rao, X., Yin, S., Wang, J., Gong, Y., Lu, S., Le, S., Tan, Y., Tang, J., Fuquan, H., & Li, M. (2015). The chromosomal SezAT toxin-antitoxin system promotes the maintenance of the SsPI-1 pathogenicity island in epidemic Streptococcus suis. Molecular Microbiology, 98, 243–257.  https://doi.org/10.1111/mmi.13116 CrossRefPubMedGoogle Scholar
  125. Yuan, J., Yamaichi, Y., & Waldor, M. K. (2011). The three Vibrio cholerae chromosome II-encoded ParE toxins degrade chromosome I following loss of chromosome II. Journal of Bacteriology, 193, 611–619.  https://doi.org/10.1128/JB.01185-10 CrossRefPubMedGoogle Scholar
  126. Zhang, Y., Zhang, J., Hoeflich, K. P., Ikura, M., Qing, G., & Inouye, M. (2003). MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Molecular Cell, 12, 913–923.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nathan Fraikin
    • 1
  • Frédéric Goormaghtigh
    • 1
  • Laurence Van Melderen
    • 1
    Email author
  1. 1.Cellular and Molecular Microbiology, Faculté des SciencesUniversité Libre de Bruxelles (ULB)GosseliesBelgium

Personalised recommendations