Advertisement

Genetic Determinants of Persistence in Escherichia coli

  • Dorien Wilmaerts
  • Pauline Herpels
  • Jan MichielsEmail author
  • Natalie Verstraeten
Chapter

Abstract

Persisters comprise a small fraction of cells within a bacterial population that transiently are tolerant to lethal doses of antibiotics. Following their discovery, persister cells went unheeded for nearly 40 years until Moyed and Bertrand revived the field of persister research in 1983. Ever since, an increasing body of literature has reported on genetic determinants of persistence. We here present a comprehensive overview of all currently known genes affecting persistence in Escherichia coli. We systematically group persister genes according to the biological processes they are involved in, more specifically a variety of stress responses and energy metabolism. We also briefly touch upon the role of toxin-antitoxin systems in persistence. In general, persister levels are positively correlated with expression levels of genes that yield protection against nutrient stress (e.g., dksA, relA), DNA damage (e.g., recA, lexA, umuDC), heat shock (e.g., dnaJ, dnaK), or oxidative stress (e.g., soxS, oxyR). This underlines the importance of these stress responses in the formation of persister cells. However, both elevated and decreased persister levels are found upon impeding the general stress response and energy metabolism, emphasizing the need for further research. Combined with additional persister genes that undoubtedly await discovery, the information presented in this work will support the development of new persister models that will in turn greatly contribute to our understanding of this intriguing phenomenon.

References

  1. Aizenman, E., Engelberg-Kulka, H., & Glaser, G. (1996). An Escherichia coli chromosomal “addiction module” regulated by guanosine [corrected] 3′,5′-bispyrophosphate: A model for programmed bacterial cell death. Proceedings of the National Academy of Sciences, 93, 6059–6063.CrossRefGoogle Scholar
  2. Allison, K. R., Brynildsen, M. P., & Collins, J. J. (2011). Heterogeneous bacterial persisters and engineering approaches to eliminate them. Current Opinion in Microbiology, 14, 593–598.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amato, S. M., & Brynildsen, M. P. (2015). Persister heterogeneity arising from a single metabolic stress. Current Biology, 25, 2090–2098.CrossRefGoogle Scholar
  4. Amato, S. M., Orman, M. A., & Brynildsen, M. P. (2013). Metabolic control of persister formation in Escherichia coli. Molecular Cell, 50, 475–487.CrossRefGoogle Scholar
  5. An, G., Justesen, J., Watson, R. J., & Friesen, J. D. (1979). Cloning the spoT gene of Escherichia coli: Identification of the spoT gene product. Journal of Bacteriology, 137, 1100–1110.PubMedPubMedCentralGoogle Scholar
  6. Anders, S., McCarthy, D. J., Chen, Y. S., Okoniewski, M., Smyth, G. K., Huber, W., & Robinson, M. D. (2013). Count-based differential expression analysis of RNA sequencing data using R and bioconductor. Nature Protocols, 8, 1765–1786.PubMedCrossRefGoogle Scholar
  7. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science, 305, 1622–1625.CrossRefGoogle Scholar
  8. Battesti, A., & Bouveret, E. (2006). Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Molecular Microbiology, 62, 1048–1063.PubMedCrossRefGoogle Scholar
  9. Battesti, A., Majdalani, N., & Gottesman, S. (2011). The RpoS-mediated general stress response in Escherichia coli. Annual Review of Microbiology, 65, 189–213.CrossRefGoogle Scholar
  10. Behmardi, P., Grewal, E., Kim, Y., & Yang, H. N. (2009). RpoS-dependant mechanism is required for cross protection conferred to hyperosmolarity by heat shock. Journal of Experimental Microbiology and Immunology, 13, 18–21.Google Scholar
  11. Bernier, S. P., Lebeaux, D., Defrancesco, A. S., Valomon, A., Ghigo, J., & Beloin, C. (2013). Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genetics, 9, e1003144.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bokinsky, G., Baidoo, E. E. K., Akella, S., Burd, H., Weaver, D., Alonso-Gutierrez, J., García-Martín, H., Lee, T. S., & Keasling, J. D. (2013). HipA-triggered growth arrest and β-lactam tolerance in Escherichia coli are mediated by RelA-dependent ppGpp synthesis. Journal of Bacteriology, 195, 3173–3182.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Borisov, V. B., Gennis, R. B., Hemp, J., & Verkhovsky, M. I. (2011). The cytochrome bd respiratory oxygen reductases. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1807, 1398–1413.CrossRefGoogle Scholar
  14. Boutte, C. C., & Crosson, S. (2013). Bacterial lifestyle shapes stringent response activation. Trends in Microbiology, 21, 174–180.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brent, R., & Ptashne, M. (1980). The lexA gene product represses its own promoter. Proceedings of the National Academy of Sciences of the United States of America, 77, 1932–1938.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brielle, R., Pinel-Marie, M. L., & Felden, B. (2016). Linking bacterial type I toxins with their actions. Current Opinion in Microbiology, 30, 144–121.CrossRefGoogle Scholar
  17. Brown, L., Gentry, D., Elliott, T., & Cashel, M. (2002). DksA affects ppGpp induction of RpoS at a translational level. Journal of Bacteriology, 184, 4455–4465.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chang, Z. (2016). The function of the DegP (HtrA) protein: Protease versus chaperone. IUBMB Life, 68, 904–907.PubMedCrossRefGoogle Scholar
  19. Chowdhury, N., Kwan, B. W., & Wood, T. K. (2016). Persistence increases in the absence of the alarmone guanosine tetraphosphate by reducing cell growth. Scientific Reports, 6, 20519.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Christensen, S. K., Mikkelsen, M., Pedersen, K., & Gerdes, K. (2001). RelE, a global inhibitor of translation, is activated during nutritional stress. Proceedings of the National Academy of Sciences, 98, 14328–14333.CrossRefGoogle Scholar
  21. Christensen, S. K., Maenhaut-Michel, G., Mine, N., Gottesman, S., Gerdes, K., & Van Melderen, L. (2004). Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: Involvement of the yefM-yoeB toxin-antitoxin system. Molecular Microbiology, 51, 1705–1717.CrossRefGoogle Scholar
  22. Christensen-Dalsgaard, M., Jørgensen, M. G., & Gerdes, K. (2010). Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Molecular Microbiology, 75, 333–348.CrossRefGoogle Scholar
  23. Cohen, G. N. (2014). Microbial biochemistry. New York: Springer International.Google Scholar
  24. Courcelle, J., & Hanawalt, P. C. (2003). RecA-dependent recovery of arrested DNA replication forks. Annual Review of Genetics, 37, 611–646.PubMedCrossRefGoogle Scholar
  25. Cox, G. B., Newton, N. A., Gibson, F., Snoswell, A., & Hamilton, J. A. (1970). The function of ubiquinone in Escherichia coli. The Biochemical Journal, 117, 551–562.PubMedPubMedCentralGoogle Scholar
  26. Debbia, E. A., Roveta, S., Schito, A. M., Gualco, L., & Marchese, A. (2001). Antibiotic persistence: The role of spontaneous DNA repair response. Microbial Drug Resistance, 7, 335–342.PubMedCrossRefGoogle Scholar
  27. Dong, T., & Schellhorn, H. E. (2009). Control of RpoS in global gene expression of Escherichia coli in minimal media. Molecular Genetics and Genomics, 281, 19–33.PubMedCrossRefGoogle Scholar
  28. Dörr, T., Lewis, K., & Vulić, M. (2009). SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genetics, 5, e1000760.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dörr, T., Vulić, M., & Lewis, K. (2010). Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biology, 8, e1000317.PubMedPubMedCentralCrossRefGoogle Scholar
  30. English, B. P., Hauryliuk, V., Sanamrad, A., Tankov, S., Dekker, N. H., & Elf, J. (2011). Single-molecule investigations of the stringent response machinery in living bacterial cells. Proceedings of the National Academy of Sciences, 108, 365–373.CrossRefGoogle Scholar
  31. Fung, D. K. C., Chan, E. W. C., Chin, M. L., & Chan, R. C. Y. (2010). Delineation of a bacterial starvation stress response network which can mediate antibiotic tolerance development. Antimicrobial Agents and Chemotherapy, 54, 1082–1093.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Garbe, T. R., Kobayashi, M., & Yukawa, H. (2000). Indole-inducible proteins in bacteria suggest membrane and oxidant toxicity. Archives of Microbiology, 173, 78–82.PubMedCrossRefGoogle Scholar
  33. Gentry, D. R., Hernandez, V. J., Nguyen, L. H., Jensen, D. B., & Cashel, M. (1993). Synthesis of the stationary-phase sigma factor σs is positively regulated by ppGpp. Journal of Bacteriology, 175, 7892–7989.CrossRefGoogle Scholar
  34. Gerdes, K., Rasmussen, P. B., & Molin, S. (1986). Unique type of plasmid maintenance function: Postsegregational killing of plasmid-free cells. Proceedings of the National Academy of Sciences of the United States of America, 83, 3116–3120.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Germain, E., Castro-Roa, D., Zenkin, N., & Gerdes, K. (2013). Molecular mechanism of bacterial persistence by HipA. Molecular Cell, 52, 248–254.CrossRefGoogle Scholar
  36. Germain, E., Roghanian, M., Gerdes, K., & Maisonneuve, E. (2015). Stochastic induction of persister cells by HipA through (p)ppGpp-mediated activation of mRNA endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 112, 5171–5176.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Giese, K. C., Michalowski, C. B., & Little, J. W. (2008). RecA-dependent cleavage of LexA dimers. Journal of Molecular Biology, 377, 148–161.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Girard, M. E., Gopalkrishnan, S., Grace, E. D., Halliday, J. A., Gourse, R. L., & Herman, C. (2018). DksA and ppGpp regulate the σS stress response by activating promoters for the small RNA DsrA and the anti-adapter protein IraP. Journal of Bacteriology, 200, e00463–e00417.PubMedPubMedCentralGoogle Scholar
  39. Girgis, H. S., Harris, K., & Tavazoie, S. (2012). Large mutational target size for rapid emergence of bacterial persistence. Proceedings of the National Academy of Sciences, 109, 12740–12745.CrossRefGoogle Scholar
  40. Giudice, E., Mac, K., & Gillet, R. (2014). Trans-translation exposed: Understanding the structures and functions of tmRNA-SmpB. Frontiers in Microbiology, 5, 1–11.CrossRefGoogle Scholar
  41. Goldfless, S. J., Morag, A. S., Belisle, K. A., Sutera, V. A., & Lovett, S. T. (2006). DNA repeat rearrangements mediated by DnaK-dependent replication fork repair. Molecular Cell, 21, 595–604.PubMedCrossRefGoogle Scholar
  42. Goltermann, L., Good, L., & Bentin, T. (2013). Chaperonins fight aminoglycoside-induced protein misfolding and promote short-term tolerance in Escherichia coli. The Journal of Biological Chemistry, 288, 10483–10489.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gragerov, A. I., Martin, E. S., Krupenko, M. A., Kashlev, M. V., & Nikiforov, V. G. (1991). Protein aggregation and inclusion body formation in Escherichia coli rpoH mutant defective in heat shock protein induction. FEBS Letters, 291, 222–224.PubMedCrossRefGoogle Scholar
  44. Grudniak, A. M., Kuć, M., & Wolska, K. I. (2005). Role of Escherichia coli DnaK and DnaJ chaperones in spontaneous and induced mutagenesis and their effect on UmuC stability. FEMS Microbiology Letters, 242, 361–366.PubMedCrossRefGoogle Scholar
  45. Gupta, A., Venkataraman, B., Vasudevan, M., & Gopinath, B. K. (2017). Co-expression network analysis of toxin-antitoxin loci in Mycobacterium tuberculosis reveals key modulators of cellular stress. Scientific Reports, 7, 5868.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gur, E. (2013). The Lon AAA+ protease. Sub-Cellular Biochemistry, 66, 35–51.PubMedCrossRefGoogle Scholar
  47. Gurnev, P. A., Ortenberg, R., Dörr, T., Lewis, K., & Bezrukov, S. M. (2012). Persister-promoting bacterial toxin TisB produces anion-selective pores in planar lipid bilayers. FEBS Letters, 586, 2529–2534.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hansen, S., Lewis, K., & Vulić, M. (2008). Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrobial Agents and Chemotherapy, 52, 2718–2726.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Harms, A., Fino, C., Sørensen, M. A., Semsey, S., & Gerdes, K. (2017). Prophages and growth dynamics confound experimental results with antibiotic-tolerant persister cells. mBio, 8, e01964-17.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Harms, A., Brodersen, D. E., Mitarai, N., & Gerdes, K. (2018). Toxins, targets, and triggers: An overview of toxin-antitoxin biology. Molecular Cell, 70, 768–784.CrossRefGoogle Scholar
  51. Harrison, J. J., Wade, W. D., Akierman, S., Vacchi-Suzzi, C., Stremick, C. A., Turner, R. J., & Ceri, H. (2009). The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrobial Agents and Chemotherapy, 53, 2253–2258.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Harshman, R. B., & Yamazaki, H. (1971). Formation of ppGpp in a relaxed and stringent strain of Escherichia coli during diauxie lag. Biochemistry, 10, 3980–3982.PubMedCrossRefGoogle Scholar
  53. Harshman, R. B., & Yamazakif, H. (1972). MSI accumulation induced by sodium chloride. Biochemistry, 11, 615–618.PubMedCrossRefGoogle Scholar
  54. Haseltine, W. A., & Block, R. (1973). Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proceedings of the National Academy of Sciences, 70, 1564–1568.CrossRefGoogle Scholar
  55. Helaine, S., Cheverton, A. M., Watson, K. G., Faure, L. M., Matthews, S. A., & Holden, D. W. (2014). Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science, 343, 204–208.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hengge-Aronis, R. (2002). Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiology and Molecular Biology Reviews, 66, 373–395.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hirakawa, H., Inazumi, Y., Masaki, T., Hirata, T., & Yamaguchi, A. (2005). Indole induces the expression of multidrug exporter genes in Escherichia coli. Molecular Microbiology, 55, 1113–1126.PubMedCrossRefGoogle Scholar
  58. Hong, S. H., Wang, X., O’Connor, H. F., Benedik, M. J., & Wood, T. K. (2012). Bacterial persistence increases as environmental fitness decreases. Microbial Biotechnology, 5, 509–522.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hu, Y., Kwan, B. W., Osbourne, D. O., Benedik, M. J., & Wood, T. K. (2015). Toxin YafQ increases persister cell formation by reducing indole signalling. Environmental Microbiology, 17, 1275–1285.PubMedCrossRefGoogle Scholar
  60. Jenkins, D. E., Auger, E. A., & Matin, A. (1991). Role of RpoH, a heat shock regulator protein, in Escherichia coli carbon starvation protein synthesis and survival. Journal of Bacteriology, 173, 1992–1996.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kamenšek, S., Podlesek, Z., Gillor, O., & Žgur-Bertok, D. (2010). Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogenous expression. BMC Microbiology, 10, 283.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kasari, V., Mets, T., Tenson, T., & Kaldalu, N. (2013). Transcriptional cross-activation between toxin-antitoxin systems of Escherichia coli. BMC Microbiology, 13, 45.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kaspy, I., Rotem, E., Weiss, N., Ronin, I., Balaban, N. Q., & Glaser, G. (2013). HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nature Communications, 4, 3001.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Keren, I., Shah, D., Spoering, A., Kaldalu, N., & Lewis, K. (2004a). Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. Journal of Bacteriology, 186, 8172–8180.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Keren, I., Kaldalu, N., Spoering, A., Wang, Y., & Lewis, K. (2004b). Persister cells and tolerance to antimicrobials. FEMS Microbiology Letters, 230, 13–18.CrossRefGoogle Scholar
  66. Kim, Y., & Wood, T. K. (2010). Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochemical and Biophysical Research Communications, 391, 209–213.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kim, J., Cho, D., Heo, P., Jung, S., Park, M., Oh, E., Sung, J., & Kim, P. (2016). Fumarate-mediated persistence of Escherichia coli against antibiotics. Antimicrobial Agents and Chemotherapy, 60, 2232–2240.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kiss, P. (2000). Results concerning products and sums of the terms of linear recurrences. Annales Mathematicae et Informaticae, 27, 1–7.Google Scholar
  69. Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A., & Collins, J. J. (2007). A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 130, 797–810.PubMedCrossRefGoogle Scholar
  70. Korch, S. B., & Hill, T. M. (2006). Ectopic overexpression of wild-type and mutant hipA genes in Escherichia coli: Effects on macromolecular synthesis and persister formation. Journal of Bacteriology, 188, 3826–3836.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Korch, S. B., Henderson, T. A., & Hill, T. M. (2003). Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Molecular Microbiology, 50, 1199–1213.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kostakioti, M., Hadjifrangiskou, M., Pinkner, J. S., & Hultgren, S. J. (2010). QseC-mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic Escherichia coli. Molecular Microbiology, 73, 1020–1031.CrossRefGoogle Scholar
  73. Kreuzer, K. N. (2013). DNA damage responses in prokaryotes: Regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harbor Perspectives in Biology, 5, a012674.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kuczyńska-Wiśnik, D., Kȩdzierska, S., Matuszewska, E., Lund, P., Taylor, A., Lipińska, B., & Laskowska, E. (2002). The Escherichia coli small heat-shock proteins IbpA and IbpB prevent the aggregation of endogenous proteins denatured in vivo during extreme heat shock. Microbiology, 148, 1757–1765.PubMedCrossRefGoogle Scholar
  75. Lacour, S., & Landini, P. (2004). σS-dependent gene expression at the onset of stationary phase in Escherichia coli: Function of σS-dependent genes and identification of their promoter sequences. Society, 186, 7186–7195.Google Scholar
  76. Landini, P., Egli, T., Wolf, J., & Lacour, S. (2014). sigmaS, a major player in the response to environmental stresses in Escherichia coli: Role, regulation and mechanisms of promoter recognition. Environmental Microbiology Reports, 6, 1–13.PubMedCrossRefGoogle Scholar
  77. Langklotz, S., & Narberhaus, F. (2011). The Escherichia coli replication inhibitor CspD is subject to growth-regulated degradation by the Lon protease. Molecular Microbiology, 80, 1313–1325.PubMedCrossRefGoogle Scholar
  78. Leatham-Jensen, M. P., Mokszycki, M. E., Rowley, D. C., Robert, D., Camberg, J. L., Sokurenko, E. V., Tchesnokova, V. L., Frimodt-Møller, J., Krogfelte, K. A., Nielsen, K. L., Frimodt-Møller, N., Sun, G., & Cohen, P. S. (2016). Uropathogenic Escherichia coli metabolite-dependent quiescence and persistence may explain antibiotic tolerance during urinary tract infection. MSphere, 1, e00055-15.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Leszczynska, D., Matuszewska, E., Kuczynska-Wisnik, D., Furmanek-Blaszk, B., & Laskowska, E. (2013). The formation of persister cells in stationary-phase cultures of Escherichia coli is associated with the aggregation of endogenous proteins. PLoS One, 8, e54737.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lewis, K. (2010). Persister cells. Annual Review of Microbiology, 64, 357–372.CrossRefGoogle Scholar
  81. Li, Y., & Zhang, Y. (2007). PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrobial Agents and Chemotherapy, 51, 2092–2099.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Li, X., Yagi, M., Morita, T., & Aiba, H. (2008). Cleavage of mRNAs and role of tmRNA system under amino acid starvation in Escherichia coli. Molecular Microbiology, 68, 462–473.PubMedCrossRefGoogle Scholar
  83. Li, J., Ji, L., Shi, W., Xie, J., & Zhang, Y. (2013). Trans-translation mediates tolerance to multiple antibiotics and stresses in Escherichia coli. The Journal of Antimicrobial Chemotherapy, 68, 2477–2481.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lindner, A. B., Madden, R., Demarez, A., Stewart, E. J., & Taddei, F. (2008). Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proceedings of the National Academy of Sciences of the United States of America, 105, 3076–3081.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Little, J. W. (1991). Mechanism of specific LexA cleavage: Autodigestion and the role of RecA coprotease. Biochimie, 73, 411–421.CrossRefGoogle Scholar
  86. Liu, S., Wu, N., Zhang, S., Yuan, Y., Zhang, W., & Zhang, Y. (2017). Variable persister gene interactions with (p)ppGpp for persister formation in Escherichia coli. Frontiers in Microbiology, 8, 1795.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lobritz, M. A., Belenky, P., Porter, C. B. M., Gutierrez, A., Yang, J. H., Schwarz, E. G., Dwyer, D. J., Khalil, A. S., & Collins, J. J. (2015). Antibiotic efficacy is linked to bacterial cellular respiration. Proceedings of the National Academy of Sciences, 112, 8173–8180.CrossRefGoogle Scholar
  88. Luidalepp, H., Jõers, A., Kaldalu, N., & Tenson, T. (2011). Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence. Journal of Bacteriology, 193, 3598–3605.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Luo, Y., Pfuetzner, R. A., Mosimann, S., Paetzel, M., Frey, E. A., Cherney, M., Kim, B., Little, J. W., & Strynadka, N. C. J. (2001). Crystal structure of LexA: A conformational switch for regulation of self-cleavage. Cell, 106, 585–594.PubMedCrossRefGoogle Scholar
  90. Ma, C., Sim, S., Shi, W., Du, L., Xing, D., & Zhang, Y. (2010). Energy production genes sucB and ubiF are involved in persister survival and tolerance to multiple antibiotics and stresses in Escherichia coli. FEMS Microbiology Letters, 303, 33–40.CrossRefGoogle Scholar
  91. Michiels, J. E., Van den Bergh, B., Verstraeten, N., & Michiels, J. (2016). Molecular mechanisms and clinical implications of bacterial persistence. Drug Resistance Updates, 29, 76–89.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Miller, C., Thomsen, L. E., Gaggero, C., Mosseri, R., Ingmer, H., & Cohen, S. N. (2004). SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science, 305, 1629–1631.CrossRefGoogle Scholar
  93. Mok, W. W. K., & Brynildsen, M. P. (2018). Timing of DNA damage responses impacts persistence to fluoroquinolones. Proceedings of the National Academy of Sciences of the United States of America, 115, e6301–e6309.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Moyed, H. S., & Bertrand, K. P. (1983). hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. Journal of Bacteriology, 155, 768–775.PubMedPubMedCentralGoogle Scholar
  95. Muffler, A., Fischer, D., Altuvia, S., Storz, G., & Hengge-Aronis, R. (1996). The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase in Escherichia coli. The EMBO Journal, 15, 1333–1339.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Muthuramalingam, M., White, J. C., & Bourne, C. R. (2016). Toxin-antitoxin modules are pliable switches activated by multiple protease pathways. Toxins, 8, 214–230.PubMedCentralCrossRefPubMedGoogle Scholar
  97. Nichols, R. J., Sen, S., Choo, Y. J., Beltrao, P., Zietek, M., Chaba, R., Lee, S., Kazmierczak, K. M., Lee, K. J., Wong, A., Shales, M., Lovett, S., Winkler, M. E., Krogan, N. J., Typas, A., & Gross, C. A. (2011). Phenotypic landscape of a bacterial cell. Cell, 144, 143–156.PubMedCrossRefGoogle Scholar
  98. Norton, J. P., & Mulvey, M. A. (2012). Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli. PLoS Pathogens, 8, e1002954.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Opperman, T., Murli, S., Smith, B. T., & Walker, G. C. (1999). A model for a umuDC-dependent prokaryotic DNA damage checkpoint. Proceedings of the National Academy of Sciences of the United States of America, 96, 9218–9223.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Orman, M. A., & Brynildsen, M. P. (2013). Dormancy is not necessary or sufficient for bacterial persistence. Antimicrobial Agents and Chemotherapy, 57, 3230–3239.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Orman, M. A., & Brynildsen, M. P. (2015). Inhibition of stationary phase respiration impairs persister formation in E. coli. Nature Communications, 6, 7983.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Page, R., & Peti, W. (2016). Toxin-antitoxin systems in bacterial growth arrest and persistence. Nature Chemical Biology, 12, 208–214.CrossRefGoogle Scholar
  103. Pandey, D. P., & Gerdes, K. (2005). Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Research, 33, 966–976.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Parsons, C. A., & West, S. C. (1993). Formation of a RuvAB-holliday junction complex in vitro. Journal of Molecular Biology, 232, 397–405.PubMedCrossRefGoogle Scholar
  105. Pedersen, K., Zavialov, A. V., Pavlov, M. Y., Elf, J., Gerdes, K., & Ehrenberg, M. (2003). The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell, 112, 131–140.CrossRefGoogle Scholar
  106. Petit, M. A., Bedale, W., Osipiuk, J., Lu, C., Rajagopalant, M., McInerney, P., Goodman, M. F., & Echols, H. (1994). Sequential folding of UmuC by the Hsp70 and Hsp60 chaperone complexes of Escherichia coli. The Journal of Biological Chemistry, 269, 23824–23829.PubMedGoogle Scholar
  107. Potrykus, K., Murphy, H., Philippe, N., & Cashel, M. (2011). ppGpp is the major source of growth rate control in E. coli. Environmental Microbiology, 13, 563–575.PubMedCrossRefGoogle Scholar
  108. Prysak, M. H., Mozdzierz, C. J., Cook, A. M., Zhu, L., Zhang, Y., Inouye, M., & Woychik, N. A. (2009). Bacterial toxin YafQ is an endoribonuclease that associates with the ribosome and blocks translation elongation through sequence-specific and frame-dependent mRNA cleavage. Molecular Microbiology, 71, 1071–1087.CrossRefGoogle Scholar
  109. Pu, Y., Zhao, Z., Li, Y., Zou, J., Ma, Q., Zhao, Y., Ke, Y., Zhu, Y., Chen, H., Baker, M. A. B., Ge, H., Sun, Y., Xie, X. S., & Bai, F. (2016). Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Molecular Cell, 62, 284–294.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Pu, Y., Li, Y., Jin, X., Tian, T., Ma, Q., Zhao, Z., Lin, S., Chen, Z., Li, B., Yao, G., Leake, M. C., Lo, C.-J., & Bai, F. (2018). ATP-dependent dynamic protein aggregation regulates bacterial dormancy depth critical for antibiotic tolerance. Molecular Cell, 73, 143–156.PubMedCrossRefGoogle Scholar
  111. Radzikowski, J. L., Vedelaar, S., Siegel, D., Ortega, Á. D., Schmidt, A., & Heinemann, M. (2016). Bacterial persistence is an active σS stress response to metabolic flux limitation. Molecular Systems Biology, 12, 1–12.CrossRefGoogle Scholar
  112. Raivio, T. L. (2005). Envelope stress responses and Gram-negative bacterial pathogenesis. Molecular Microbiology, 56, 1119–1128.PubMedCrossRefGoogle Scholar
  113. Ramisetty, B. C. M., Ghosh, D., Chowdhury, M. R., & Santhosh, R. S. (2017). What is the link between stringent response, endoribonuclease encoding type II toxin-antitoxin systems and persistence? Frontiers in Microbiology, 7, 1882.Google Scholar
  114. Rao, N. N., Liu, S., & Kornberg, A. (1998). Inorganic polyphosphate in Escherichia coli: The phosphate regulon and the stringent response. Journal of Bacteriology, 180, 2186–2193.PubMedPubMedCentralGoogle Scholar
  115. Rice, C. D., Pollard, J. E., Lewis, Z. T., & McCleary, W. R. (2009). Employment of a promoter-swapping technique shows that PhoU modulates the activity of the PstSCAB2ABC transporter in Escherichia coli. Applied and Environmental Microbiology, 75, 573–582.PubMedCrossRefGoogle Scholar
  116. Rotem, E., Loinger, A., Ronin, I., Levin-Reisman, I., Gabay, C., Shoresh, N., Biham, O., & Balaban, N. Q. (2010). Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proceedings of the National Academy of Sciences of the United States of America, 107, 12541–12546.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Rowe, M. T., & Kirk, R. (1999). An investigation into the phenomenon of cross-protection in Escherichia coli O157:H7. Food Microbiology, 16, 157–164.CrossRefGoogle Scholar
  118. Runyon, G. T., Bear, D. G., & Lohman, T. M. (1990). Escherichia coli helicase II (UvrD) protein initiates DNA unwinding at nicks and blunt ends. Proceedings of the National Academy of Sciences of the United States of America, 87, 6386–6393.CrossRefGoogle Scholar
  119. Sakoh, M., Ito, K., & Akiyama, Y. (2005). Proteolytic activity of HtpX, a membrane-bound and stress-controlled protease from Escherichia coli. The Journal of Biological Chemistry, 280, 33305–33310.PubMedCrossRefGoogle Scholar
  120. Santos-Beneit, F. (2015). The Pho regulon: A huge regulatory network in bacteria. Frontiers in Microbiology, 6, 1–13.CrossRefGoogle Scholar
  121. Sat, B., Hazan, R., Fisher, T., Khaner, H., Glaser, G., & Engelberg-Kulka, H. (2001). Programmed cell death in Escherichia coli: Some antibiotics can trigger mazEF lethality. Journal of Bacteriology, 183, 2041–2045.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Schröder, H., Langer, T., Hartl, F. U., & Bukau, B. (1993). DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. The EMBO Journal, 12, 4137–4144.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Seong, I. S., Oh, J. Y., Lee, J. W., Tanaka, K., & Chung, C. H. (2000). The HslU ATPase acts as a molecular chaperone in prevention of aggregation of SulA, an inhibitor of cell division in Escherichia coli. FEBS Letters, 477, 224–229.PubMedCrossRefGoogle Scholar
  124. Shah, D., Zhang, Z., Khodursky, A., Kaldalu, N., Kurg, K., & Lewis, K. (2006). Persisters: A distinct physiological state of E. coli. BMC Microbiology, 6, 53.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Shan, Y., Lazinski, D., Rowe, S., Camilli, A., & Lewis, K. (2015). Genetic basis of persister tolerance to aminoglycosides in Escherichia coli. mBio, 6, e00078-15.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Shan, Y., Gandt, A. B., Rowe, S. E., Deisinger, J. P., Conlon, B. P., & Lewis, K. (2017). ATP-dependent persister formation in Escherichia coli. mBio, 8, e02267-16.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Simmons, L. A., Foti, J. J., Cohen, S. E., & Walker, G. C. (2008). The SOS regulatory network. EcoSal Plus.Google Scholar
  128. Spira, B., Silberstein, N., & Yagil, E. (1995). Guanosine 3′,5′-bispyrophosphate (ppGpp) synthesis in cells of Escherichia coli starved for P(i). Journal of Bacteriology, 177, 4053–4058.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Spoering, A. L., Vulić, M., & Lewis, K. (2006). GlpD and PlsB participate in persister cell formation in Escherichia coli. Journal of Bacteriology, 188, 5136–5144.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Steed, P. M., & Wanner, B. L. (1993). Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCAB-phoU operon: Evidence of a new role for the PhoU protein in the phosphate regulon. Journal of Bacteriology, 175, 6797–6809.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Steinsiek, S., Stagge, S., & Bettenbrock, K. (2014). Analysis of Escherichia coli mutants with a linear respiratory chain. PLoS One, 9, e87307.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Stewart, E. J., Madden, R., & Paul, G. (2005). Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biology, 3, e45.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Tashiro, Y., Kawata, K., Taniuchi, A., Kakinuma, K., May, T., & Okabe, S. (2012). RelE-mediated dormancy is enhanced at high cell density in Escherichia coli. Journal of Bacteriology, 194, 1169–1176.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Theodore, A., Lewis, K., & Vulić, M. (2013). Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific components of the SOS response pathway. Genetics, 195, 1265–1276.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Tramonti, A., Visca, P., De Canio, M., De Biase, D., & Falconi, M. (2002). Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-like transcriptional activator of the Escherichia coli glutamic acid decarboxylase system. Journal of Bacteriology, 184, 2306–2613.CrossRefGoogle Scholar
  136. Tripathi, A., Dewan, P. C., Siddique, S. A., & Varadarajan, R. (2014). MazF-induced growth inhibition and persister generation in Escherichia coli. The Journal of Biological Chemistry, 289, 4191–4205.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Tuteja, N., & Tuteja, R. (2004). Prokaryotic and eukaryotic DNA helicases: Essential molecular motor proteins for cellular machinery. European Journal of Biochemistry, 271, 1835–1848.PubMedCrossRefGoogle Scholar
  138. Unden, G., & Bongaerts, J. (1997). Alternative respiratory pathways of Escherichia coli: Energetics and transcriptional regulation in response to electron acceptors. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1320, 217–234.CrossRefGoogle Scholar
  139. Van den Bergh, B., Michiels, J. E., Wenseleers, T., Windels, E. M., Vanden, B. P., Kestemont, D., De Meester, L., Verstrepen, K. J., Verstraeten, N., Fauvart, M., & Michiels, J. (2016). Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence. Nature Microbiology, 1, 16020.CrossRefGoogle Scholar
  140. Vázquez-Laslop, N., Lee, H., & Neyfakh, A. A. (2006). Increased persistence in Escherichia coli caused by controlled expression of toxins or other unrelated proteins. Journal of Bacteriology, 188, 3494–3497.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Vega, N. M., Allison, K. R., Khalil, A. S., & Collins, J. J. (2012). Signaling-mediated bacterial persister formation. Nature Chemical Biology, 8, 431–433.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Verstraeten, N., Knapen, W. J., Kint, C. I., Liebens, V., Van den Bergh, B., Dewachter, L., Michiels, J. E., Fu, Q., David, C. C., Fierro, A. C., Marchal, K., Beirlant, J., Versées, W., Hofkens, J., Jansen, M., Fauvart, M., & Michiels, J. (2015). Obg and membrane depolarization are part of a microbial bet-hedging strategy that leads to antibiotic tolerance. Molecular Cell, 59, 9–21.CrossRefGoogle Scholar
  143. Vinella, D., Albrecht, C., Cashel, M., & D’Ari, R. (2005). Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coli. Molecular Microbiology, 56, 958–970.PubMedCrossRefGoogle Scholar
  144. Völzing, K. G., & Brynildsen, M. P. (2015). Stationary-phase persisters to ofloxacin sustain DNA damage and require repair systems only during recovery. mBio, 6, e00731–e00746.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Wang, X., Lord, D. M., Cheng, H. Y., Osbourne, D. O., Hong, S. H., Sanchez-Torres, V., Quiroga, C., Zheng, K., Herrmann, T., Peti, W., Benedik, M. J., Page, R., & Wood, T. K. (2012). A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nature Chemical Biology, 8, 855–861.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Wang, X., Lord, D. M., Hong, S. H., Peti, W., Benedik, M. J., Page, R., & Wood, T. K. (2013). Type II toxin/antitoxin MqsR/MqsA controls type V toxin/antitoxin GhoT/GhoS. Environmental Microbiology, 15, 1734–1744.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Wang, J. H., Singh, R., Benoit, M., Keyhan, M., Sylvester, M., Hsieh, M., Thathireddy, A., Hsieh, Y. J., & Matin, A. C. (2014). Sigma S-dependent antioxidant defense protects stationary-phase Escherichia coli against the bactericidal antibiotic gentamicin. Antimicrobial Agents and Chemotherapy, 58, 5964–5975.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Wang, T., El Meouche, I., & Dunlop, M. J. (2017). Bacterial persistence induced by salicylate via reactive oxygen species. Scientific Reports, 7, 43839.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Weber, H. H., Polen, T. T., Heuveling, J. J., Wendisch, V. F. V. F., & Hengge-Aronis, R. (2005). Genome-wide analysis of the general stress response network in Escherichia coli: SigmaS-dependent genes, promoters, and sigma factor selectivity. Journal of Bacteriology, 187, 1591–1603.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Wessner, F., Lacoux, C., Goeders, N., Fouquier d’Hérouel, A., Matos, R., Serror, P., Van Melderen, L., & Repoila, F. (2015). Regulatory crosstalk between type I and type II toxin-antitoxin systems in the human pathogen Enterococcus faecalis. RNA Biology, 12, 1099–1108.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Wilmaerts, D., Bayoumi, M., Dewachter, L., Knapen, W., Mika, J. T., Hofkens, J., Dedecker, P., Maglia, G., Verstraeten, N., & Michiels, J. (2018). The persistence-inducing toxin HokB forms dynamic pores that cause ATP leakage. mBio, 9, e00744-18.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Wout, P., Pu, K., Sullivan, S. M., Reese, V., Zhou, S., Lin, B., & Maddock, J. R. (2004). The Escherichia coli GTPase CgtAE cofractionates with the 50S ribosomal subunit and interacts with SpoT, a ppGpp synthetase/hydrolase. Journal of Bacteriology, 186, 5249–5257.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Wu, Y., Vulić, M., Keren, I., & Lewis, K. (2012). Role of oxidative stress in persister tolerance. Antimicrobial Agents and Chemotherapy, 56, 4922–4926.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Wu, N., He, L., Cui, P., Wang, W., Yuan, Y., Liu, S., Xu, T., Zhang, S., Wu, J., Zhang, W., & Zhang, Y. (2015). Ranking of persister genes in the same Escherichia coli genetic background demonstrates varying importance of individual persister genes in tolerance to different antibiotics. Frontiers in Microbiology, 6, 1003.PubMedPubMedCentralGoogle Scholar
  155. Xiao, H., Kalman, M., Ikehara, K., Zemel, S., Glaser, G., & Cashel, M. (1991). Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. The Journal of Biological Chemistry, 266, 5980–5990.PubMedPubMedCentralGoogle Scholar
  156. Yamaguchi, Y., Park, J. H., & Inouye, M. (2009). MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. The Journal of Biological Chemistry, 284, 28746–28753.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Yamanaka, K., & Inouye, M. (1997). Growth-phase-dependent expression of cspD, encoding a member of the CspA family in Escherichia coli. Journal of Bacteriology, 176, 5126–5130.CrossRefGoogle Scholar
  158. Yamanaka, K., Zheng, W., Crooke, E., Wang, Y. H., & Inouye, M. (2001). CspD, a novel DNA replication inhibitor induced during the stationary phase in Escherichia coli. Molecular Microbiology, 39, 1572–1584.PubMedCrossRefPubMedCentralGoogle Scholar
  159. Yim, H. H., Brems, R. L., & Villarejo, M. (1994). Molecular characterization of the promoter of osmY, an rpoS-dependent gene. Journal of Bacteriology, 176, 100–107.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Zhang, Y., & Inouye, M. (2011). RatA (YfjG), an Escherichia coli toxin, inhibits 70S ribosome association to block translation initiation. Molecular Microbiology, 79, 1418–1429.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Zhang, Y., Zhang, J., Hara, H., Kato, I., & Inouye, M. (2005). Insights into the mRNA cleavage mechanism by MazF, an mRNA interferase. The Journal of Biological Chemistry, 280, 3143–3150.PubMedCrossRefGoogle Scholar
  162. Zolkiewski, M. (1999). ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. Journal of Biological Chemistry, 274, 28083–28086.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dorien Wilmaerts
    • 1
    • 2
  • Pauline Herpels
    • 1
    • 2
  • Jan Michiels
    • 1
    • 2
    Email author
  • Natalie Verstraeten
    • 1
    • 2
  1. 1.VIBCenter for MicrobiologyLeuvenBelgium
  2. 2.KU LeuvenCentre of Microbial and Plant GeneticsLeuvenBelgium

Personalised recommendations