Advertisement

Persister Formation and Antibiotic Tolerance of Chronic Infections

  • Kim LewisEmail author
  • Sylvie Manuse
Chapter

Abstract

Two different types of mechanisms allow bacteria to evade killing by antibiotics—genetically encoded resistance and phenotypic tolerance conferred by persister cells. While our knowledge of resistance mechanisms is fairly sophisticated, understanding of tolerance is still fragmentary, partly because the phenomenon is only displayed by a few rare cells.

Treatment of acute infections has benefited substantially from our understanding of mechanisms of resistance. It is reasonable to expect that treatment of chronic infections will similarly benefit from deciphering the mechanisms that cause the formation of drug-tolerant persisters. In this chapter, we will discuss both the mechanism of persister formation and therapeutic approaches to eradicate these seemingly invincible cells.

References

  1. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science, 305, 1622–1625.CrossRefGoogle Scholar
  2. Berghoff, B. A., Hoekzema, M., Aulbach, L., & Wagner, E. G. (2017). Two regulatory RNA elements affect TisB-dependent depolarization and persister formation. Molecular Microbiology, 103, 1020–1033.CrossRefGoogle Scholar
  3. Bigger, J. W. (1944). Treatment of staphylococcal infections with penicillin. Lancet, 2, 497–500.CrossRefGoogle Scholar
  4. Brotz-Oesterhelt, H., Beyer, D., Kroll, H. P., Endermann, R., Ladel, C., Schroeder, W., Hinzen, B., Raddatz, S., Paulsen, H., Henninger, K., Bandow, J. E., Sahl, H. G., & Labischinski, H. (2005). Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nature Medicine, 11, 1082–1087.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Cameron, D. R., Shan, Y., Zalis, E. A., Isabella, V., & Lewis, K. (2018). A genetic determinant of persister cell formation in bacterial pathogens. Journal of Bacteriology, 200, e00303-18.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cho, H., Uehara, T., & Bernhardt, T. G. (2014). Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell, 159, 1300–1311.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Conlon, B. P., Nakayasu, E. S., Fleck, L. E., Lafleur, M. D., Isabella, V. M., Coleman, K., Leonard, S. N., Smith, R. D., Adkins, J. N., & Lewis, K. (2013). Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature, 503, 365–370.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Conlon, B. P., Rowe, S. E., Gandt, A. B., Nuxoll, A. S., Donegan, N. P., Zalis, E. A., Clair, G., Adkins, J. N., Cheung, A. L., & Lewis, K. (2016). Persister formation in Staphylococcus aureus is associated with ATP depletion. Nature Microbiology, 1, 16051.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Correia, F. F., D’onofrio, A., Rejtar, T., Li, L., Karger, B. L., Makarova, K., Koonin, E. V., & Lewis, K. (2006). Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli. Journal of Bacteriology, 188, 8360–8367.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Davis, B. D., Chen, L. L., & Tai, P. C. (1986). Misread protein creates membrane channels: An essential step in the bactericidal action of aminoglycosides. Proceedings of the National Academy of Sciences of the United States of America, 83, 6164–6168.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Dorr, T., Lewis, K., & Vulic, M. (2009). SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genetics, 5, E1000760.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Dorr, T., Vulic, M., & Lewis, K. (2010). Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biology, 8, E1000317.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Fleck, L. E., North, E. J., Lee, R. E., Mulcahy, L. R., Casadei, G., & Lewis, K. (2014). A screen for and validation of prodrug antimicrobials. Antimicrobial Agents and Chemotherapy, 58, 1410–1419.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Fong, S. S., Nanchen, A., Palsson, B. O., & Sauer, U. (2006). Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes. The Journal of Biological Chemistry, 281, 8024–8033.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Fridman, O., Goldberg, A., Ronin, I., Shoresh, N., & Balaban, N. Q. (2014). Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature, 513, 418–421.CrossRefGoogle Scholar
  16. Gavrish, E., Sit, C. S., Cao, S., Kandror, O., Spoering, A., Peoples, A., Ling, L., Fetterman, A., Hughes, D., Bissell, A., Torrey, H., Akopian, T., Mueller, A., Epstein, S., Goldberg, A., Clardy, J., & Lewis, K. (2014). Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease Clpc1p1p2. Chemistry and Biology, 21, 509–518.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Germain, E., Castro-Roa, D., Zenkin, N., & Gerdes, K. (2013). Molecular mechanism of bacterial persistence by HipA. Molecular Cell, 52, 248–254.PubMedCrossRefGoogle Scholar
  18. Goormaghtigh, F., Fraikin, N., Putrins, M., Hallaert, T., Hauryliuk, V., Garcia-Pino, A., Sjodin, A., Kasvandik, S., Udekwu, K., Tenson, T., Kaldalu, N., & Van Melderen, L. (2018). Reassessing the role of type II toxin-antitoxin systems in formation of Escherichia coli type II persister cells. MBio, 9, e00640.PubMedPubMedCentralGoogle Scholar
  19. Gristina, A. G., Hobgood, C. D., Webb, L. X., & Myrvik, Q. N. (1987). Adhesive colonization of biomaterials and antibiotic resistance. Biomaterials, 8, 423–426.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Gurnev, P. A., Ortenberg, R., Dorr, T., Lewis, K., & Bezrukov, S. M. (2012). Persister-promoting bacterial toxin TisB produces anion-selective pores in planar lipid bilayers. FEBS Letters, 586, 2529–2534.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Hansen, S., Lewis, K., & Vulić, M. (2008). The role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrobial Agents and Chemotherapy, 52(8), 2718–2726.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Harms, A., Fino, C., Sorensen, M. A., Semsey, S., & Gerdes, K. (2017). Prophages and growth dynamics confound experimental results with antibiotic-tolerant persister cells. MBio, 8, e01964-17.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hooper, D. (2001). Mechanism of action of antimicrobials: Focus on fluoroquinolones. Clinical Infectious Diseases, 32, S9–S15.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Jesaitis, A. J., Franklin, M. J., Berglund, D., Sasaki, M., Lord, C. I., Bleazard, J. B., Duffy, J. E., Beyenal, H., & Lewandowski, Z. (2003). Compromised host defense on Pseudomonas aeruginosa biofilms: Characterization of neutrophil and biofilm interactions. Journal of Immunology, 171, 4329–4339.CrossRefGoogle Scholar
  25. Kaspy, I., Rotem, E., Weiss, N., Ronin, I., Balaban, N. Q., & Glaser, G. (2013). Hipa-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nature Communications, 4, 3001.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Keren, I., Kaldalu, N., Spoering, A., Wang, Y., & Lewis, K. (2004a). Persister cells and tolerance to antimicrobials. FEMS Microbiology Letters, 230, 13–18.CrossRefGoogle Scholar
  27. Keren, I., Shah, D., Spoering, A., Kaldalu, N., & Lewis, K. (2004b). Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. Journal of Bacteriology, 186, 8172–8180.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Keren, I., Wu, Y., Inocencio, J., Mulcahy, L. R., & Lewis, K. (2013). Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science, 339, 1213–1216.CrossRefGoogle Scholar
  29. Kim, W., Zhu, W., Hendricks, G. L., Van Tyne, D., Steele, A. D., Keohane, C. E., Fricke, N., Conery, A. L., Shen, S., Pan, W., Lee, K., Rajamuthiah, R., Fuchs, B. B., Vlahovska, P. M., Wuest, W. M., Gilmore, M. S., Gao, H., Ausubel, F. M., & Mylonakis, E. (2018). A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature, 556, 103–107.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Kirstein, J., Hoffmann, A., Lilie, H., Schmidt, R., Rubsamen-Waigmann, H., Brotz-Oesterhelt, H., Mogk, A., & Turgay, K. (2009). The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Molecular Medicine, 1, 37–49.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kwan, B. W., Valenta, J. A., Benedik, M. J., & Wood, T. K. (2013). Arrested protein synthesis increases persister-like cell formation. Antimicrobial Agents and Chemotherapy, 57, 1468–1473.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Lee, B. G., Park, E. Y., Lee, K. E., Jeon, H., Sung, K. H., Paulsen, H., Rubsamen-Schaeff, H., Brotz-Oesterhelt, H., & Song, H. K. (2010). Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nature Structural and Molecular Biology, 17, 471–478.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Leid, J. G., Shirtliff, M. E., Costerton, J. W., & Stoodley, P. (2002). Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infection and Immunity, 70, 6339–6345.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Lewis, K. (2001). Riddle of biofilm resistance. Antimicrobial Agents and Chemotherapy, 45, 999–1007.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Lewis, K. (2007). Persister cells, dormancy and infectious disease. Nature Reviews. Microbiology, 5, 48–56.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Lewis, K. (2010). Persister cells. Annual Review of Microbiology, 64, 357–372.CrossRefGoogle Scholar
  37. Lewis, K. (2013). Platforms for antibiotic discovery. Nature Reviews. Drug Discovery, 12, 371–387.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Li, D. H., Chung, Y. S., Gloyd, M., Joseph, E., Ghirlando, R., Wright, G. D., Cheng, Y. Q., Maurizi, M. R., Guarne, A., & Ortega, J. (2010). Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: A model for the ClpX/ClpA-bound state of ClpP. Chemistry and Biology, 17, 959–969.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Maisonneuve, E., & Gerdes, K. (2014). Molecular mechanisms underlying bacterial persisters. Cell, 157, 539–548.CrossRefGoogle Scholar
  40. Malik, M., Zhao, X., & Drlica, K. (2006). Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones. Molecular Microbiology, 61, 810–825.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Michel, K. H., & Kastner, R. E. (Eli Lilly and Company). (1985). A54556 antibiotics and process for production thereof. US Patent 4492650.Google Scholar
  42. Michiels, J. E., Van Den Bergh, B., Verstraeten, N., Fauvart, M., & Michiels, J. (2016). In vitro emergence of high persistence upon periodic aminoglycoside challenge in the ESKAPE pathogens. Antimicrobial Agents and Chemotherapy, 60, 4630–4637.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Mojsoska, B., Cameron, D. R., Bartell, J. A., Haagensen, J. A. J., Sommer, L. M., Lewis, K., Molin, S., & Johansen, H. K. (2019). The high persister phenotype of Pseudomonas aeruginosa is associated with increased fitness and persistence in cystic fibrosis airways. bioRxiv, 561589.Google Scholar
  44. Molina-Quiroz, R. C., Lazinski, D. W., Camilli, A., & Levy, S. B. (2016). Transposon-sequencing analysis unveils novel genes involved in the generation of persister cells in uropathogenic Escherichia coli. Antimicrobial Agents and Chemotherapy, 60, 6907–6910.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Moore, S. A., Moennich, D. M., & Gresser, M. J. (1983). Synthesis and hydrolysis of ADP-arsenate By beef heart submitochondrial particles. The Journal of Biological Chemistry, 258, 6266–6271.PubMedPubMedCentralGoogle Scholar
  46. Moyed, H. S., & Bertrand, K. P. (1983). hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. Journal of Bacteriology, 155, 768–775.PubMedPubMedCentralGoogle Scholar
  47. Mulcahy, L. R., Burns, J. L., Lory, S., & Lewis, K. (2010). Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. Journal of Bacteriology, 192, 6191–6199.PubMedPubMedCentralCrossRefGoogle Scholar
  48. O’shea, R., & Moser, H. E. (2008). Physicochemical properties of antibacterial compounds: Implications for drug discovery. Journal of Medicinal Chemistry, 51(10), 2871–2878.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Pandey, D. P., & Gerdes, K. (2005). Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Research, 33, 966–976.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Pu, Y., Li, Y., Jin, X., Tian, T., Ma, Q., Zhao, Z., Lin, S. Y., Chen, Z., Li, B., Yao, G., Leake, M. C., Lo, C. J., & Bai, F. (2019). ATP-dependent dynamic protein aggregation regulates bacterial dormancy depth critical for antibiotic tolerance. Molecular Cell, 73, 143–156. e4.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Radlinski, L., Rowe, S. E., Kartchner, L. B., Maile, R., Cairns, B. A., Vitko, N. P., Gode, C. J., Lachiewicz, A. M., Wolfgang, M. C., & Conlon, B. P. (2017). Pseudomonas aeruginosa exoproducts determine antibiotic efficacy against Staphylococcus aureus. PLoS Biology, 15, e2003981.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Ramisetty, B. C., Ghosh, D., Roy Chowdhury, M., & Santhosh, R. S. (2016). What is the link between stringent response, endoribonuclease encoding type II toxin-antitoxin systems and persistence? Frontiers in Microbiology, 7, 1882.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Robertson, G. T., Zhao, J., Desai, B. V., Coleman, W. H., Nicas, T. I., Gilmour, R., Grinius, L., Morrison, D. A., & Winkler, M. E. (2002). Vancomycin tolerance induced by erythromycin but not by loss of vncrs, vex3, or pep27 function in Streptococcus pneumoniae. Journal of Bacteriology, 184, 6987–7000.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Sass, P., Josten, M., Famulla, K., Schiffer, G., Sahl, H. G., Hamoen, L., & Brotz-Oesterhelt, H. (2011). Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. Proceedings of the National Academy of Sciences of the United States of America, 108, 17474–17479.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Schumacher, M. A., Piro, K. M., Xu, W., Hansen, S., Lewis, K., & Brennan, R. G. (2009). Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science, 323, 396–401.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Schumacher, M. A., Balani, P., Min, J., Chinnam, N. B., Hansen, S., Vulic, M., Lewis, K., & Brennan, R. G. (2015). Hipba-promoter structures reveal the basis of heritable multidrug tolerance. Nature, 524, 59–64.CrossRefGoogle Scholar
  57. Shah, D., Zhang, Z., Khodursky, A., Kaldalu, N., Kurg, K., & Lewis, K. (2006). Persisters: A distinct physiological state of E. coli. BMC Microbiology, 6, 53.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Shan, Y., Lazinski, D., Rowe, S., Camilli, A., & Lewis, K. (2015). Genetic basis of persister tolerance to aminoglycosides in Escherichia coli. MBio, 6, e00078-15.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Shan, Y., Brown Gandt, A., Rowe, S. E., Deisinger, J. P., Conlon, B. P., & Lewis, K. (2017). ATP-dependent persister formation in Escherichia coli. MBio, 8, e02267-16.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Sharma, B., Brown, A. V., Matluck, N. E., Hu, L. T., & Lewis, K. (2015). Borrelia burgdorferi, the causative agent of Lyme disease, forms drug-tolerant persister cells. Antimicrobial Agents and Chemotherapy, 59, 4616–4624.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Spoering, A. L., & Lewis, K. (2001). Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. Journal of Bacteriology, 183, 6746–6751.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. Lancet, 358, 135–138.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Torrey, H. L., Keren, I., Via, L. E., Lee, J. S., & Lewis, K. (2016). High persister mutants in Mycobacterium tuberculosis. PLos One, 11, e0155127.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Unoson, C., & Wagner, E. (2008). A small SOS-induced toxin is targeted against the inner membrane in Escherichia coli. Molecular Microbiology, 70, 258–270.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Vakulenko, S. B., & Mobashery, S. (2003). Versatility of aminoglycosides and prospects for their future. Clinical Microbiology Reviews, 16, 430–450.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Van Den Bergh, B., Michiels, J. E., Wenseleers, T., Windels, E. M., Boer, P. V., Kestemont, D., De Meester, L., Verstrepen, K. J., Verstraeten, N., Fauvart, M., & Michiels, J. (2016). Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence. Nature Microbiology, 1, 16020.CrossRefGoogle Scholar
  67. Vogel, J., Argaman, L., Wagner, E. G., & Altuvia, S. (2004). The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. Current Biology, 14, 2271–2276.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Vuong, C., Voyich, J. M., Fischer, E. R., Braughton, K. R., Whitney, A. R., Deleo, F. R., & Otto, M. (2004). Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cellular Microbiology, 6, 269–275.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Wilmaerts, D., Bayoumi, M., Dewachter, L., Knapen, W., Mika, J. T., Hofkens, J., Dedecker, P., Maglia, G., Verstraeten, N., & Michiels, J. (2018). The persistence-inducing toxin HokB forms dynamic pores that cause ATP leakage. MBio, 9, e00744-18.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Wu, X., Sharma, B., Niles, S., O’connor, K., Schilling, R., Matluck, N., D’onofrio, A., Hu, L. T., & Lewis, K. (2018). Identifying vancomycin as an effective antibiotic for killing Borrelia burgdorferi. Antimicrobial Agents and Chemotherapy, 62, e01201-18.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Zalis, E. A., Nuxoll, A. S., Manuse, S., Clair, G., Radlinski, L. C., Conlon, B. P., Adkins, J., & Lewis, K. (2019). Stochastic variation in expression of the tricarboxylic acid cycle produces persister cells. MBio, 10, e01930–19.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Antimicrobial Discovery Center, Department of BiologyNortheastern UniversityBostonUSA

Personalised recommendations