Advertisement

The Cosine Depth Distribution Classifier for Directional Data

  • Houyem DemniEmail author
  • Amor Messaoud
  • Giovanni C. Porzio
Chapter
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

Directions, rotations, axes, clock, or calendar measurements can be represented as angles or equivalently as unit vectors. As points lying on the boundary of circles, spheres, or hyper-spheres, they are also referred as directional data, and they require dedicated methods to be analyzed. In the framework of supervised classification, this work introduces a directional data classifier based on a data depth function. Depth functions provide an inner–outer ordering of the data in a reference space according to some centrality measure, and have appeared as a powerful tool in many fields of multivariate statistics. The recently introduced distance-based depth functions for directional data are considered here. More specifically, this work introduces a cosine depth based distribution method which aims at assigning directional data to classes, given that a training set with class labels is already available. A simulation study evaluating the performance of the proposed method is provided.

Notes

Acknowledgements

The authors wish to thank the two anonymous referees for their precious comments on a first version of this work. Thanks are also due to Giuseppe Pandolfo and Ondrej Vencalek for their valuable support and suggestions.

References

  1. Batschelet, E. (1981). Circular statistics in biology. London: Academic.Google Scholar
  2. Bowers, J. A., Morton, I. D., & Mould, G. I. (2000). Directional statistics of the wind and waves. Applied Ocean Research, 22(1), 1330.CrossRefGoogle Scholar
  3. Buttarazzi, D., Pandolfo, G., & Porzio, G. C. (2018). A boxplot for circular data. Biometrics, 74(4), 14921501.MathSciNetCrossRefGoogle Scholar
  4. Chang, T. (1993). Spherical regression and the statistics of tectonic plate reconstructions. International Statistical Review/Revue Internationale de Statistique, 61(2), 299316.Google Scholar
  5. Cui, X., Lin, L., & Yang, G. (2008). An extended projection data depth and its applications to discrimination. Communications in Statistics, Theory and Methods, 37(14), 22762290.MathSciNetCrossRefGoogle Scholar
  6. Downs, T. D., & Liebman, J. (1969). Statistical methods for vectorcardiographic directions. IEEE Transactions on Biomedical Engineering, 16(1), 8794.Google Scholar
  7. Ghosh, A. K., & Chaudhuri, P. (2005). On maximum depth and related classifiers. Scandinavian Journal of Statistics, 32(2), 327350.MathSciNetCrossRefGoogle Scholar
  8. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. New York: Springer.Google Scholar
  9. Koshevoy, G., & Mosler, K. (1997). Zonoid trimming for multivariate distributions. The Annals of Statistics, 25(5), 19982017.MathSciNetzbMATHGoogle Scholar
  10. Lange, T., Mosler, K., & Mozharovskyi, P. (2014). Fast nonparametric classification based on data depth. Statistical Papers, 55(1), 4969.MathSciNetCrossRefGoogle Scholar
  11. Li, J., Cuesta-Albertos, J. A., & Liu, R. Y. (2012). DD-classifier: Nonparametric classification procedure based on DD-plot. Journal of the American Statistical Association, 107(498), 737753.MathSciNetzbMATHGoogle Scholar
  12. Liu, R. Y. (1990). On a notion of data depth based on random simplices. The Annals of Statistics, 18(1), 405414.MathSciNetCrossRefGoogle Scholar
  13. Liu, R. Y., Parelius, J. M., & Singh, K. (1999). Multivariate analysis by data depth: Descriptive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh). The Annals of Statistics, 27(3), 783–858.MathSciNetCrossRefGoogle Scholar
  14. Liu, R. Y., & Singh, K. (1992). Ordering directional data: concepts of data depth on circles and spheres. The Annals of Statistics, 20(3), 14681484.MathSciNetCrossRefGoogle Scholar
  15. Mahalanobis, P. (1936). On the generalized distance in statistics. Proceedings of the National Institute of Science of India, 12, 4955.Google Scholar
  16. Makinde, O. S., & Fasoranbaku, O. A. (2018). On maximum depth classifiers: depth distribution approach. Journal of Applied Statistics, 45(6), 11061117.MathSciNetCrossRefGoogle Scholar
  17. Mardia, K. V., & Jupp, P. E. (2009). Directional statistics. New York: Wiley.Google Scholar
  18. Messaoud, A., Weihs, C., & Hering, F. (2008). Detection of chatter vibration in a drilling process using multivariate control charts. Computational Statistics and Data Analysis, 52(6), 32083219.MathSciNetCrossRefGoogle Scholar
  19. Paindaveine, D., & Van Bever, G. (2015). Nonparametrically consistent depth-based classifiers. Bernoulli, 21(1), 6282.MathSciNetCrossRefGoogle Scholar
  20. Pandolfo, G., D’Ambrosio, A., & Porzio, G. C. (2018). A note on depth-based classification of circular data. Electronic Journal of Applied Statistical Analysis, 11(2), 447462.MathSciNetGoogle Scholar
  21. Pandolfo, G., Paindaveine, D., & Porzio, G. C. (2018). Distance-based depths for directional data. The Canadian Journal of Statistics, Canadian Journal of Statistics, 46(4), 593609.MathSciNetGoogle Scholar
  22. Romanazzi, M. (2009). Data depth, random simplices and multivariate dispersion. Statistics and Probability Letters, 79(12), 14731479.MathSciNetCrossRefGoogle Scholar
  23. Rousseeuw, P. J., Ruts, I., & Tukey, J. W. (1999). The bagplot: A bivariate boxplot. The American Statistician, 53(4), 382387.Google Scholar
  24. Tukey, J. W. (1975). Mathematics and the picturing of data. Proceedings of the International Congress of Mathematicians, Vancouver, 1975(2), 523531.Google Scholar
  25. Vapnik, V. (1998). Statistical learning theory. New York: Wiley.Google Scholar
  26. Vencálek, O. (2017). Depth-based classification for multivariate data. Austrian Journal of Statistics, 46(34), 117128.Google Scholar
  27. Zuo, Y. (2003). Projection-based depth functions and associated medians. The Annals of Statistics, 31(5), 14601490.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Houyem Demni
    • 1
    • 2
    Email author
  • Amor Messaoud
    • 3
  • Giovanni C. Porzio
    • 4
  1. 1.Institut Supérieur de Gestion de TunisUniversité de TunisTunisTunisia
  2. 2.University of Cassino and Southern LazioCassinoItaly
  3. 3.Tunis Business SchoolUniversité de TunisTunisTunisia
  4. 4.Department of Economics and LawUniversity of Cassino and Southern LazioCassinoItaly

Personalised recommendations