Executive Dysfunction in Subcortical Diseases

  • Alfredo ArdilaEmail author


Executive functions depend on an extensive brain circuit including not only cortical areas, but also some subcortical areas, including the basal ganglia and the thalamus. It is not surprising to find that subcortical pathologies can be associated with executive functions disturbances. Functional, as well as anatomical, connectivity between frontal cortex and striatum via the thalamus and the globus pallidus have been suggested. In this chapter, executive dysfunction in the most prototypical basal ganglia diseases—Parkinson disease and Huntington disease—are examined. It is explained that defects in a diversity of executive functioning tests in Parkinson and Huntington diseases have been documented. There is also evidence that the thalamus participates in the executive functions brain system, and it is connected with the prefrontal cortex. Consequently, it is understandable that thalamic damage is associated with disturbances in executive functions. Finally, in this chapter, executive functions impairments in subcortical vascular disease and white matter disease are examined. The general conclusion is that clinical and experimental evidence demonstrate that subcortical structures participate in the executive functions brain system, and executive disorders are associated not only with cortical but also with subcortical pathology.


Basal ganglia Striatum Thalamus Globus pallidus Parkinson’s disease Huntington’s disease 


  1. Aarsland, D., Bronnick, K., Williams-Gray, C., Weintraub, D., Marder, K., Kulisevsky, J., et al. (2010). Mild cognitive impairment in Parkinson disease: A multicenter pooled analysis. Neurology, 75(12), 1062–1069.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.PubMedCrossRefGoogle Scholar
  3. Antonini, A., Vontobel, P., Psylla, M., Günther, I., Maguire, P. R., Missimer, J., et al. (1995). Complementary positron emission tomographic studies of the striatal dopaminergic system in Parkinson’s disease. Archives of Neurology, 52, 1183–1190.PubMedCrossRefGoogle Scholar
  4. Arnett, P. A., Rao, S. M., Grafman, J., Bernardin, L., Luchetta, T., Binder, J. R., & Lobeck, L. (1997). Executive functions in multiple sclerosis: An analysis of temporal ordering, semantic encoding, and planning abilities. Neuropsychology, 11(4), 535–44.Google Scholar
  5. Ardila, A., Bernal, B., & Rosselli, M. (2017). Executive functions brain system: An activation likelihood estimation meta-analytic study. Archives of Clinical Neuropsychology, 33(4), 379–405.CrossRefGoogle Scholar
  6. Chiaravalloti, N. D., & DeLuca, J. (2008). Cognitive impairment in multiple sclerosis. Lancet Neurology, 7(12), 1139–1151.PubMedCrossRefGoogle Scholar
  7. de Groot, J. C., de Leeuw, F. E., Oudkerk, M., van Gijn, J., Hofman, A., Jolles, J., et al. (2000). Cerebral white matter lesions and cognitive function: The Rotterdam Scan Study. Annals of Neurology, 47(2), 145–151.PubMedCrossRefGoogle Scholar
  8. Dirnberger, G., Frith, C. D., & Jahanshahi, M. (2005). Executive dysfunction in Parkinson’s disease is associated with altered pallidalfrontal processing. Neuroimage, 25, 588–599.PubMedCrossRefGoogle Scholar
  9. Divac, I., Rosvold, H. E., & Schwarcbart, M. K. (1967). Behavioural effects of selective ablation of the caudate nucleus. Journal of Comparative & Physiological Psychology, 63, 184–190.CrossRefGoogle Scholar
  10. Domínguez, D. J. F., Poudel, G., Stout, J. C., Gray, M., Chua, P., Borowsky, B., et al. (2017). Longitudinal changes in the fronto-striatal network are associated with executive dysfunctionand behavioral dysregulation in Huntington’s disease: 30 months IMAGE-HD data. Cortex, 92, 139–149.CrossRefGoogle Scholar
  11. Elias, J. W., & Treland, J. E. (1994). Executive function in Parkinson’s disease and subcortical disorders. Seminars in Clinical Neuropsychiatry, 4, 34–40.Google Scholar
  12. Foong, J., Rozewicz, L., Quaghebeur, G., Davie, C. A., Kartsounis, L. D., Thompson, A. J., et al. (1997). Executive function in multiple sclerosis. The role of frontal lobe pathology. Brain, 120(Pt 1), 15–26.PubMedCrossRefGoogle Scholar
  13. Gunning-Dixon, F. M., Brickman, A. M., Cheng, J. C., & Alexopoulos, G. S. (2009). Aging of cerebral white matter: a review of MRI findings. International Journal of Geriatric Psychiatry: A Journal of the Psychiatry of Late Life and Allied Sciences, 24(2), 109–117.Google Scholar
  14. Hartikainen, K. M., Sun, L., Polvivaara, M., Brause, M., Lehtimäki, K., Haapasalo, J., et al. (2014). Immediate effects of deep brain stimulation of anterior thalamic nuclei on executive functions and emotion-attention interaction in humans. Journal of Clinical and Experimental Neuropsychology, 36(5), 540–550.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Higginson, C. I., King, D. S., Levine, D., Wheelock, V. L., Khamphay, N. O., & Sigvardt, K. A. (2003). The relationship between executive function and verbal memory in Parkinson’s disease. Brain and Cognition, 52(3), 343–352.PubMedCrossRefGoogle Scholar
  16. Ho, A. K., Sahakian, B. J., Brown, R. G., Barker, R. A., Hodges, J. R., Ané, M. N., et al. (2003). Profile of cognitive progression in early Huntington’s disease. Neurology., 61(12), 1702–1706.PubMedCrossRefGoogle Scholar
  17. Jahanshahi, M., Rowe, J., Saleem, T., Brown, R. G., Limousin-Dowsey, P., Rothwell, J. C., et al. (2002). Striatal contribution to cognition: Working memory and executive function in Parkinson’s disease before and after unilateral posteroventral pallidotomy. Journal of Cognitive Neurosciences, 14, 298–310.CrossRefGoogle Scholar
  18. Jakab, A., Blanc, R., & Berényi, E. L. (2012). Mapping changes of in vivo connectivity patterns in the human mediodorsal thalamus: Correlations with higher cognitive and executive functions. Brain Imaging & Behavior, 6(3), 472–483.CrossRefGoogle Scholar
  19. Kennedy, K. M., & Raz, N. (2009). Aging white matter and cognition: Differential effects of regional variations in diffusion properties on memory, executive functions, and speed. Neuropsychologia, 47(3), 916–927.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Koini, M., Filippi, M., Rocca, M.A., Yousry, T., Ciccarelli, O., Tedeschi, G., Gallo, A., Ropele, S., Valsasina, P., Riccitelli, G., Damjanovic, D., Muhlert, N., Mancini, L., Fazekas, F., Enzinger, C & MAGNIMS fMRI Study Group. (2016). Correlates of executive functions in multiple sclerosis based on structural and functional mr imaging: Insights from a multicenter study. Radiology, 280(3), 869–879.CrossRefGoogle Scholar
  21. Kramer, J. H., Reed, B. R., Mungas, D., Weiner, M. W., & Chui, H. C. (2002). Executive dysfunction in subcortical ischaemic vascular disease. Journal of Neurology, Neurosurgery and Psychiatry, 72(2), 217–220.PubMedCrossRefGoogle Scholar
  22. Kudlicka, A., Clare, L., & Hindle, J. V. (2011). Executive functions in Parkinson’s disease: Systematic review and meta-analysis. Movements Disorders, 26(13), 2305–2315.CrossRefGoogle Scholar
  23. Lamar, M., Price, C. C., Giovannetti, T., Swenson, R., & Libon, D. J. (2010). Subcortical ischaemic vascular disease. Behavioral Neurology, 22(1–2), 53–62.PubMedCrossRefGoogle Scholar
  24. Lange, K. W., Sahakian, B. J., Quinn, N. P., Marsden, C. D., & Robbins, T. W. (1995). Comparison of executive and visuospatial memory function in Huntington’s disease and dementia of Alzheimer type matched for degree of dementia. Journal of Neurology, Neurosurgery and Psychiatry, 58(5), 598–606.PubMedCrossRefGoogle Scholar
  25. Lawrence, A. D., Sahakian, B. J., Hodges, J. R., Rosser, A. E., Lange, K. W., & Robbins, T. W. (1996). Executive and mnemonic functions in early Huntington’s disease. Brain, 119(Pt 5), 1633–1645.PubMedCrossRefGoogle Scholar
  26. Lemiere, J., Decruyenaere, M., Evers-Kiebooms, G., Vandenbussche, E., & Dom, R. J. (2004). Cognitive changes in patients with Huntington’s disease (HD) and asymptomatic carriers of the HD mutation—A longitudinal follow-up study. Neurology, 251(8), 935–942.Google Scholar
  27. Levy, G., Jacobs, D. M., Tang, M. X., Côté, L. J., Louis, E. D., Alfaro, B., et al. (2002). Memory and executive function impairment predict dementia in Parkinson’s disease. Movement Disorders, 17(6), 1221–1226.PubMedCrossRefGoogle Scholar
  28. Lewis, S. J., Dove, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2004). Striatal contributions to working memory: A functional magnetic resonance imaging study in humans. European Journal of Neuroscience, 19, 755–760.PubMedCrossRefGoogle Scholar
  29. Linek, V., Sonka, K., & Bauer, J. (2005). Dysexecutive syndrome following anterior thalamic ischemia in the dominant hemisphere. Journal of Neurological Sciences, 229–30, 117–120.CrossRefGoogle Scholar
  30. Martínez-Horta, S., Pagonabarraga, J., Fernández de Bobadilla, R., García-Sanchez, C., & Kulisevsky, J. (2013). Apathy in Parkinson’s disease: More than just executive dysfunction. Journal of the International Neuropsychological Society, 21, 1–12.Google Scholar
  31. Mazoyer, B., Zago, L., Mellet, E., Bricogne, S., Etard, O., Houdé, O., et al. (2001). Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Research Bulletin, 54(3), 287–298.PubMedCrossRefGoogle Scholar
  32. McKinlay, A., Grace, R. C., Dalrymple-Alford, J. C., & Roger, D. (2010). Characteristics of executive function impairment in Parkinson’s disease patients without dementia. Journal of the International Neuropsychological Society, 16(2), 268–277.PubMedCrossRefGoogle Scholar
  33. Mega, M. S., & Cummings, J. L. (1994). Frontal-subcortical circuits and neuropsychiatric disorders. Journal of Neuropsychiaty and Clinical Neurosciences, 16, 358–370.Google Scholar
  34. Mok, V. C., Wong, A., Lam, W. W., Tang, W. K., Kwok, T., Hui, A. C., et al. (2004). Cognitive impairment and functional outcome after stroke associated with small vessel disease. Journal of Neurology, Neurosurgery and Psychiatry, 75(4), 560–566.PubMedCrossRefGoogle Scholar
  35. Monchi, O., Petrides, M., Strafella, A. P., Worsley, K. J., & Doyon, J. (2006). Functional role of the basal ganglia in the planning and execution of actions. Annals of Neurology, 59, 257–264.PubMedCrossRefGoogle Scholar
  36. Montoya, A., Price, B. H., Menear, M., & Lepage, M. (2006). Brain imaging and cognitive dysfunctions in Huntington’s disease. Journal of Psychiatry & Neurosciences, 31(1), 21–29.Google Scholar
  37. Muslimovic, D., Post, B., Speelman, J. D., & Schmand, B. (2005). Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology, 65(8), 1239–1245.PubMedCrossRefGoogle Scholar
  38. Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence fora superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12(2), 241–268.CrossRefGoogle Scholar
  39. Owen, A. M. (1997). Cognitive planning in humans: Neuropsychological, neuroanatomical and neuropharmacological perspectives. Progress in Neurobiology, 53, 431–450.PubMedCrossRefGoogle Scholar
  40. Owen, A. M. (2004). Cognitive dysfunction in Parkinson’s disease: The role of frontostriatal circuitry. The Neuroscientist, 10, 525–537.PubMedCrossRefGoogle Scholar
  41. Owen, A. M., James, M., Leigh, P. N., Summers, B. A., Marsden, C. D., Quinn, N. A., et al. (1992). Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain, 115, 1727–1751.PubMedCrossRefGoogle Scholar
  42. Peinemann, A., Schuller, S., Pohl, C., Jahn, T., Weindl, A., & Kassubek, J. (2005). Executive dysfunction in early stages of Huntington’s disease is associated with striatal and insular atrophy: A neuropsychological and voxel-based morphometric study. Journal of Neurological Sciences, 239(1), 111–119.CrossRefGoogle Scholar
  43. Radanovic, M., Azambuja, M., Mansur, L. L., Porto, C. S., & Scaff, M. (2003). Thalamus and language: Interface with attention, memory and executive functions. Arquivos de Neuropsiquiatria, 61, 34–42.CrossRefGoogle Scholar
  44. Robbins, T. W., James, M., Owen, A. M., Lange, K. W., Lees, A. J., & Leigh, P. N. (1994). Cognitive deficits in progressive supranuclear palsy, Parkinson’s disease, and multiple system atrophy in tests sensitive to frontal lobe dysfunction. Journal of Neurology, Neurosurgery and Psychiatry, 57, 79–88.PubMedCrossRefGoogle Scholar
  45. Rogers, R. D., Andrews, T. C., Grasby, P. M., Brooks, D. J., & Robbins, T. W. (2000). Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. Journal of Cognitive Neuroscience, 12, 142–162.PubMedCrossRefGoogle Scholar
  46. Rosselli, D., Rosselli, M., Penagos, B., & Ardila, A. (1987). Huntington’s disease in Colombia: A neuropsychological analysis. International Journal of Neurosciences, 32(3–4), 933–942.CrossRefGoogle Scholar
  47. Rowe, J., Stephan, K. E., Fristonm, K., Frackowiak, R., Lees, A., & Passingham, R. (2002). Attention to action in Parkinson’s disease: Impaired effective connectivity among frontal cortical regions. Brain, 125, 276–289.PubMedCrossRefGoogle Scholar
  48. Stout, J. C., Paulsen, J. S., Queller, S., Solomon, A. C., Whitlock, K. B., Campbell, J. C., et al. (2011). Neurocognitive signs in prodromal Huntington disease. Neuropsychology, 25(1), 1–14.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Sylvester, C. Y. C., Wager, T. D., Lacey, S. C., Hernandez, L., Nichols, T. E., & Smith, E. E. (2003). Switching attention and resolving interference: FMRI measures of executive functions. Neuropsychologia, 41, 357–370.PubMedCrossRefGoogle Scholar
  50. Taylor, A. E., Saint-Cyr, J. A., & Lang, A. E. (1986). Frontal lobe dysfunction in Parkinson’s disease. Brain, 109, 845–883.PubMedCrossRefGoogle Scholar
  51. Tomimoto, H. (2011). Subcortical vascular dementia. Neuroscience Research, 71(3), 193–199.PubMedCrossRefGoogle Scholar
  52. Tullberg, M., Fletcher, E., DeCarli, C., Mungas, D., Reed, B. R., Harvey, D. J., et al. (2004). White matter lesions impair frontal lobe function regardless of their location. Neurology, 63(2), 246–253.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Van der Werf, Y. D., Scheltens, P., Lindeboom, J., Witter, M. P., Uylings, H. B., & Jolles, J. (2003). Deficits of memory, executive functioning and attention following infarction in the thalamus; A study of 22 cases with localized lesions. Neuropsychologia, 41(10), 1330–1344.PubMedCrossRefGoogle Scholar
  54. Weintraub, D., Moberg, P. J., Culbertson, W. C., Duda, J. E., Katz, I. R., & Stern, M. B. (2005). Dimensions of executive function in Parkinson’s disease. Dementia and Geriatric Cognitive Disorders, 20(2–3), 140–144.PubMedCrossRefGoogle Scholar
  55. Zgaljardic, D. J., Borod, J. C., Foldi, N. S., & Mattis, P. (2003). A review of the cognitive and behavioral sequelae of Parkinson’s disease: Relationship to frontostriatal circuitry. Cognitive and Behavioral Neurology, 16(4), 193–210.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sechenov UniversityMoscowRussia
  2. 2.Albizu UniversityMiamiUSA

Personalised recommendations