The Effect of Gravity and Upright Posture on Circulation

  • Branko Furst


Adaptation to gravity is an essential requirement for life on earth and plays a fundamental role in structuring musculoskeletal support and in the organizing of bodily fluids. About 60% of muscle mass is dedicated to opposing gravity. Moving blood possesses a significant momentum, and a change in posture requires a separate set of adaptive responses for its optimal distribution. Unlike the quadrupeds whose long bodily axis is parallel with the ground, humans spend over two thirds of their lives in the upright or sitting position in line with the gravitational pull. To counteract the effect of gravity, humans and tall vertebrates have developed a host of short-term neuronal and long-term humoral adjustments which correct and maintain a steady mean arterial pressure during change in posture or sudden acceleration. The aim of this chapter is first to examine the physiologic circulatory response to upright posture and the levels of organization responsible for its maintenance. The controversial issue of the siphon effect on perfusion of the brain is discussed in the context of environmental adaptations. Next, the salient features of cerebral blood supply and the dependence of brain function on buoyancy are examined. Human exposure to microgravity removes hydrostatic gradients and causes a headward shift of blood and extracellular body fluids. Microgravity experiments suggest the existence of body’s own “buoyancy field” (upthrust) generated by total body water (60% of total body weight) which bathes the water-free elements consisting of connective tissue, fat, tendons, and bone matrix. This buoyancy vector is parallel with the long axis of the body and works in opposition to gravitational loading. The heart is positioned at the fulcrum between the forces of gravity and levity (buoyancy).


Upright posture Gravity Levity Venous valves Hydrostatic column Baroreceptors Medullary cardiovascular center Vestibulo-sympathetic reflex Vascular siphon Brain perfusion in giraffe Cerebral autoregulation Blood–brain barrier Archimedes principle Intracranial pressure curve Cerebrospinal fluid Choroid plexus Negative intracranial pressure Circulation in microgravity Visual impairment intracranial pressure syndrome Prolonged bed rest 


  1. 1.
    Scott GR. Elevated performance: the unique physiology of birds that fly at high altitudes. J Exp Biol. 2011;214(15):2455–62.PubMedCrossRefGoogle Scholar
  2. 2.
    Tyack PL, et al. Extreme diving of beaked whales. J Exp Biol. 2006;209(21):4238–53.PubMedCrossRefGoogle Scholar
  3. 3.
    Maurice Abitbol M. Effect of posture and locomotion on energy expenditure. Am J Phys Anthropol. 1988;77(2):191–9.CrossRefGoogle Scholar
  4. 4.
    Verhulst J. Uprightness. In: Developmental dynamics in humans and other primates. Ghent, NY: Adonis Press; 2003. p. 144–99.Google Scholar
  5. 5.
    Rohen JW. General principles of form. In: Functional morphology: the dynamic wholeness of the human organism. Hillsdale, NY: Adonis Press; 2007. p. 3–84.Google Scholar
  6. 6.
    Bevegärd S, Lodin A. Postural circulatory changes at rest and during exercise in five patients with congenital absence of valves in the deep veins of the legs. J Intern Med. 1962;172(1):21–9.Google Scholar
  7. 7.
    Rowell LB. Reflex control during orthostasis. In: Human cardiovascular control. New York: Oxford University Press; 1993. p. 37–80.Google Scholar
  8. 8.
    Jänig W, McLachlan EM. Neurobiology of the autonomic nervous system. In: Autonomic failure. Oxford, UK: Oxford University Press; 2013. p. 21–34.Google Scholar
  9. 9.
    Yates BJ, Bolton PS, Macefield VG. Vestibulo-sympathetic responses. Compr Physiol. 2014;4(2):851.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hammam E, Macefield VG. Vestibular modulation of sympathetic nerve activity to muscle and skin in humans. Front Neurol. 2017;8:334.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Horak F, et al. Effects of vestibular rehabilitation on dizziness and imbalance. Otolaryngology. 1992;106(2):175–80.CrossRefGoogle Scholar
  12. 12.
    Mittelstaedt H. Somatic graviception. Biol Psychol. 1996;42(1–2):53–74.PubMedCrossRefGoogle Scholar
  13. 13.
    Vaitl D, Mittelstaedt H, Baisch F. Shifts in blood volume alter the perception of posture. Int J Psychophysiol. 1997;27(2):99–105.PubMedCrossRefGoogle Scholar
  14. 14.
    Vaitl D, et al. Shifts in blood volume alter the perception of posture: further evidence for somatic graviception. Int J Psychophysiol. 2002;44(1):1–11.PubMedCrossRefGoogle Scholar
  15. 15.
    Rowell LB. Passive effects of graivity. In: Human cardiovascular control. New York: Oxford University Press; 1993. p. 3–36.Google Scholar
  16. 16.
    Seymour RS, Arndt JO. Independent effects of heart–head distance and caudal blood pooling on blood pressure regulation in aquatic and terrestrial snakes. J Exp Biol. 2004;207(8):1305–11.PubMedCrossRefGoogle Scholar
  17. 17.
    Siegel RE. Why Galen and Harvey did not compare the heart to a pump. Am J Cardiol. 1967;20(1):117–21.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hill L, Barnard H. The influence of the force of gravity on the circulation. J Physiol. 1897;21(4–5):323–52.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Seymour RS, Johansen K. Blood flow uphill and downhill: does a siphon facilitate circulation above the heart? Comp Biochem Physiol A Comp Physiol. 1987;88(2):167–70.PubMedCrossRefGoogle Scholar
  20. 20.
    Seymour RS, Hargens AR, Pedley TJ. The heart works against gravity. Am J Phys Regul Integr Comp Phys. 1993;265(4):R715–20.Google Scholar
  21. 21.
    Hicks JW, Badeer HS. Siphon mechanism in collapsible tubes: application to circulation of the giraffe head. Am J Phys Regul Integr Comp Phys. 1989;256(2):R567–71.Google Scholar
  22. 22.
    Hicks JW, Badeer HS. Gravity and the circulation: “open” vs. “closed” systems. Am J Phys Regul Integr Comp Phys. 1992;262(5):R725–32.Google Scholar
  23. 23.
    Lillywhite HB. Circulatory adaptations of snakes to gravity. Am Zool. 1987;27(1):81–95.CrossRefGoogle Scholar
  24. 24.
    Lillywhite HB, Pough FH. Control of arterial pressure in aquatic sea snakes. Am J Phys Regul Integr Comp Phys. 1983;244(1):R66–73.Google Scholar
  25. 25.
    Lillywhite HB, et al. Cardiovascular responses of snakes to hypergravity. Gravitational and Space Research. 2007;10:2.Google Scholar
  26. 26.
    Hicks JW, Munis JR. The siphon controversy counterpoint: the brain need not be “baffling”. Am J Phys Regul Integr Comp Phys. 2005;289(2):R629–32.Google Scholar
  27. 27.
    van Dijk JG. Fainting in animals. Clin Auton Res. 2003;13(4):247–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Hargens AR, et al. Gravitational haemodynamics and oedema prevention in the giraffe. Nature. 1987;329(6134):59.PubMedCrossRefGoogle Scholar
  29. 29.
    Brøndum E, et al. Jugular venous pooling during lowering of the head affects blood pressure of the anesthetized giraffe. Am J Phys Regul Integr Comp Phys. 2009;297(4):R1058–65.Google Scholar
  30. 30.
    Wikipedia. Siphon. 2018 12.20.2018]; Available from
  31. 31.
    Gisolf J, et al. The siphon controversy: an integration of concepts and the brain as baffle. Am J Phys Regul Integr Comp Phys. 2005;289(2):R627–9.Google Scholar
  32. 32.
    Xing C-Y, et al. Distribution of cardiac output to the brain across the adult lifespan. J Cereb Blood Flow Metab. 2017;37(8):2848–56.PubMedCrossRefGoogle Scholar
  33. 33.
    Seymour RS, Bosiocic V, Snelling EP. Fossil skulls reveal that blood flow rate to the brain increased faster than brain volume during human evolution. R Soc Open Sci. 2016;3(8):160305.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Sokoloff L, et al. The effect of mental arithmetic on cerebral circulation and metabolism. J Clin Invest. 1955;34(7):1101–8.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hiura M, et al. Changes in cerebral blood flow during steady-state cycling exercise: a study using oxygen-15-labeled water with PET. J Cereb Blood Flow Metab. 2014;34(3):389–96.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Paulson O, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2(2):161–92.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004;45(4):545–52.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Johanson CE, et al. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008;5(1):10.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Bulat M, Klarica M. Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev. 2011;65(2):99–112.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Bradley K. Cerebrospinal fluid pressure. J Neurol Neurosurg Psychiatry. 1970;33(3):387–97.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Grady MS, Bedford RF, Park T. Changes in superior sagittal sinus pressure in children with head elevation, jugular venous compression, and PEEP. J Neurosurg. 1986;65(2):199–202.PubMedCrossRefGoogle Scholar
  42. 42.
    Andresen M, Juhler M. Intracranial pressure following complete removal of a small demarcated brain tumor: a model for normal intracranial pressure in humans. J Neurosurg. 2014;121(4):797–801.PubMedCrossRefGoogle Scholar
  43. 43.
    Andresen M, et al. Effect of postural changes on ICP in healthy and ill subjects. Acta Neurochir. 2015;157(1):109–13.PubMedCrossRefGoogle Scholar
  44. 44.
    Matjasko J, et al. Anesthesia and surgery in the seated position: analysis of 554 cases. Neurosurgery. 1985;17(5):695–702.PubMedCrossRefGoogle Scholar
  45. 45.
    Bithal P, et al. Comparative incidence of venous air embolism and associated hypotension in adults and children operated for neurosurgery in the sitting position. Eur J Anaesthesiol. 2004;21(7):517–22.PubMedCrossRefGoogle Scholar
  46. 46.
    Gale T, Leslie K. Anaesthesia for neurosurgery in the sitting position. J Clin Neurosci. 2004;11(7):693–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Degnan A, Levy L. Pseudotumor cerebri: brief review of clinical syndrome and imaging findings. Am J Neuroradiol. 2011;32(11):1986–93.PubMedCrossRefGoogle Scholar
  48. 48.
    Clément G, Pavy-Le Traon A. Centrifugation as a countermeasure during actual and simulated microgravity: a review. Eur J Appl Physiol. 2004;92(3):235–48.PubMedCrossRefGoogle Scholar
  49. 49.
    Hargens AR, Watenpaugh DE. Cardiovascular adaptation to spaceflight. Med Sci Sports Exerc. 1996;28(8):977–82.PubMedCrossRefGoogle Scholar
  50. 50.
    Hargens AR, Richardson S. Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight. Respir Physiol Neurobiol. 2009;169:S30–3.PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang L-F, Hargens AR. Spaceflight-induced intracranial hypertension and visual impairment: pathophysiology and countermeasures. Physiol Rev. 2017;98(1):59–87.CrossRefGoogle Scholar
  52. 52.
    Roberts DR, et al. Effects of spaceflight on astronaut brain structure as indicated on MRI. N Engl J Med. 2017;377(18):1746–53.PubMedCrossRefGoogle Scholar
  53. 53.
    Clément G, Skinner A, Lathan C. Distance and size perception in astronauts during long-duration spaceflight. Life. 2013;3(4):524–37.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Turner RT. Invited review: what do we know about the effects of spaceflight on bone? J Appl Physiol. 2000;89(2):840–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Roberts DR, Petersen LG. Studies of hydrocephalus associated with long-term spaceflight may provide new insights into cerebrospinal fluid flow dynamics here on earth. JAMA Neurol. 2019.Google Scholar
  56. 56.
    Williams D, et al. Acclimation during space flight: effects on human physiology. Can Med Assoc J. 2009;180(13):1317–23.CrossRefGoogle Scholar
  57. 57.
    Coupe M, et al. Cardiovascular deconditioning: from autonomic nervous system to microvascular dysfunctions. Respir Physiol Neurobiol. 2009;169:S10–2.PubMedCrossRefGoogle Scholar
  58. 58.
    Perhonen MA, Zuckerman JH, Levine BD. Deterioration of left ventricular chamber performance after bed rest: “cardiovascular deconditioning” or hypovolemia? Circulation. 2001;103(14):1851–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Levine BD, Zuckerman JH, Pawelczyk JA. Cardiac atrophy after bed-rest deconditioning: a nonneural mechanism for orthostatic intolerance. Circulation. 1997;96(2):517–25.PubMedCrossRefGoogle Scholar
  60. 60.
    Dittmer D, Teasell R. Complications of immobilization and bed rest. Part 1: musculoskeletal and cardiovascular complications. Can Fam Physician. 1993;39:1428.PubMedPubMedCentralGoogle Scholar
  61. 61.
    West BJ. Pulmonary blood flow and gas exchange. In: Respiratory physiology: people and ideas. New York: Oxford University Press; 1996. p. 140–69.CrossRefGoogle Scholar
  62. 62.
    Galvin I, Drummond G, Nirmalan M. Distribution of blood flow and ventilation in the lung: gravity is not the only factor. Br J Anaesth. 2007;98(4):420–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Mosqueda-Garcia R. Role of the autonomic nervous system in vasovagal syncope. In: Alboni P, Furlan R, editors. Vasovagal syncope. Cham: Springer; 2015. p. 53–65.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Branko Furst
    • 1
  1. 1.Professor of AnesthesiologyAlbany Medical CollegeAlbanyUSA

Personalised recommendations