Arterial Pulse

  • Branko Furst


The evolution of quantitative methods of arterial pulse analysis paralleled a gradual devolution of the art of arterial pulse diagnosis from its elevated status in antiquity to a basic clinical skill of assessing the pulse for “rate and rhythm.” In this chapter, a historical overview of pulse diagnosis is given and contrasted with the advent of analytical techniques of arterial waveform analysis in time and frequency domains. The discovery of “standing waves” suggested that the arteries form a resonant system driven by the heart. Experimental evidence for active aortic contractions supports this view. The dichotomy of pressure and flow waves as they propagate to the periphery is expressed by greater velocity and increase in amplitude of the former and by slower velocity and decrease in amplitude of the latter. Available mathematical methods of modeling the arterial wave dynamics include the Windkessel model, Fourier analysis, wave intensity, and harmonic analysis. Strengths and limitations of each method are discussed in the context of experimental physiology and clinical medicine.


Arterial pulse Sphygmology Harmony Musical laws Pulse diagnosis Waveform analysis Windkessel method Fourier analysis Resonant system Transmission line model Wave intensity analysis Active aortic pulsations Harmonic analysis Pulse wave velocity Augmentation index Central arterial pressure Pulse wave contour 


  1. 1.
    Bedford DE. The ancient art of feeling the pulse. Br Heart J. 1951;13(4):423-437.CrossRefGoogle Scholar
  2. 2.
    Wang S-H. The pulse classic, Mai Jing. Boulder, CO: Blue Poppy Press; 2002.Google Scholar
  3. 3.
    Lad V. Secrets of the pulse; the ancient art of ayurvedic pulse diagnosis. 2nd ed. Albuquerque, NM: The Ayurvedic Press; 2006.Google Scholar
  4. 4.
    Siegel RE. The substrate of biological function, in Galen's system of physiology and medicine. Basel: Karger; 1968. p. 183–92.Google Scholar
  5. 5.
    Siegel RE. The humoral doctrine: basic properties of humors, in Galen's system of physiology and medicine. Basel: Karger; 1968. p. 216–36.Google Scholar
  6. 6.
    Siegel RE. Respiration and combustion, in Galen's system of physiology and medicine. Basel: Karger; 1968. p. 135–82.Google Scholar
  7. 7.
    Ghasemzadeh N, Zafari AM. A brief journey into the history of the arterial pulse. Cardiol Res Pract. 2011;2011:1–14. Scholar
  8. 8.
    Siegel RE. Galen's views on the heart and blood flow, in Galen's system of physiology and medicine. Basel: Karger; 1968. p. 30–134.Google Scholar
  9. 9.
    Vijaya GK. Original form of Kepler's third law and its misapplication in propositions XXXII-XXXVII in Newton's principia (book I). Heliyon. 2019;5(2):e01274.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Haase R. In: Godwin J, editor. Kepler; s world harmony and its significance for today, in cosmic music; musical keys to teh interpretation of reality. Rochester, Vermont: Inner Traditions; 1989. p. 111–30.Google Scholar
  11. 11.
    Martin J, Eimas R. William Harvey and the circulation of the blood. Books at Iowa. 1991;55:5–23.CrossRefGoogle Scholar
  12. 12.
    Allen PM. A Christian Rosenkreutz Anthology. 3rd ed. Blauvelt, New York: Steiner Books; 1981.Google Scholar
  13. 13.
    Harvey W. An anatomical disquisition on the motion of the heart and blood in animals in great books of the Western world. Encycl. Britannica, R.M. Hutchins, editor. Encyclopedia Britannica: Chicago; 1952. p. 276–8.Google Scholar
  14. 14.
    Nichols W, O’Rourke M, Vlachopoulos C. Pressure pulse waveform analysis. In: McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. Croydon, UK: CRC; 2011. p. 595–638.Google Scholar
  15. 15.
    Rosemann R. Landois’ Lehrbuch der Physiologie des Menschen. Berlin: Urban & Schwarzenberg; 1919.Google Scholar
  16. 16.
    Nichols W, O’Rourke M, Vlachopoulos C. Introduction, in McDonald's blood flow in arteries: theoretical, experimental and clinical principles. Croydon, UK: CRC; 2011. p. 1–11.Google Scholar
  17. 17.
    Westerhof N, Lankhaar JW, Westerhof BE. The arterial windkessel. Med Biol Eng Comput. 2009;47(2):131–41.CrossRefGoogle Scholar
  18. 18.
    Parker KH. A brief history of arterial wave mechanics. Med Biol Eng Comput. 2009;47(2):111–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    O’Rourke MF. Time domain analysis of the arterial pulse in clinical medicine. Med Biol Eng Comput. 2009;47(2):119.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Westerhof N, Sipkema P, Elzinga G. Arterial impedance. In Quantitative cardiovasuclar studies: clinical and research applications of engineering principles. Baltimore: University Park Press; 1979.Google Scholar
  21. 21.
    Remington JW. The physiology of the aorta and major arteries. In: Hamilton WF, Dow P, editors. Handbook of physiology. Washington, DC: American Physiological Society; 1963. p. 799–838.Google Scholar
  22. 22.
    Remington J, O’Brien LJ. Construction of aortic flow pulse from pressure pulse. American Journal of Physiology--Legacy Content. 1970;218(2):437–47.CrossRefGoogle Scholar
  23. 23.
    Hamilton W, Dow P. An experimental study of the standing waves in the pulse propagated through the aorta. American Journal of Physiology—Legacy Content. 1938;125(1):48–59.CrossRefGoogle Scholar
  24. 24.
    Murgo JP, et al. Aortic input impedance in normal man: relationship to pressure wave forms. Circulation. 1980;62(1):105–16.PubMedCrossRefGoogle Scholar
  25. 25.
    Alexander RS. The genesis of the aortic standing wave. Circ Res. 1953;1(2):145–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Alexander RS. Standing-wave components in arterial pulses of hypothermic dogs. Circ Res. 1958;6(5):580–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Spencer M, Denison A. Pulsatile blood flow in the vascular system. In: Hamilton W, Dow P, editors. Handbook of physiology. Washington, DC: American Physiological Society; 1963. p. 839–46.Google Scholar
  28. 28.
    Palatini P, et al. Blood pressure changes during running in humans: the" beat" phenomenon. J Appl Physiol. 1989;67(1):52–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Rowell LB, et al. Disparities between aortic and peripheral pulse pressures induced by upright exercise and vasomotor changes in man. Circulation. 1968;37(6):954–64.PubMedCrossRefGoogle Scholar
  30. 30.
    O’Rourke M, et al. The rhythm of running: can the heart join in? Intern Med J. 1993;23(6):708–10.Google Scholar
  31. 31.
    McDonald D, Taylor M. The hydrodynamics of the arterial circulation. Prog Biophys Biophys Chem. 1959;9:107–73.CrossRefGoogle Scholar
  32. 32.
    Westerhof N, Stergiopulos N, Noble MI. Times and Sines: Fourier analysis, in snapshots of hemodynamics: an aid for clinical research and graduate education. New York: Springer; 2010. p. 233–7.Google Scholar
  33. 33.
    Nichols W, O’Rourke M, Vlachopoulos C. McDonald's blood flow in arteries: theoretical, experimental and clinical principles, vol. 6. Croydon, UK: CRC; 2011.Google Scholar
  34. 34.
    Westerhof N, et al. Forward and backward waves in the arterial system. Cardiovasc Res. 1972;6(6):648–56.PubMedCrossRefGoogle Scholar
  35. 35.
    Avolio A, et al. Arterial hemodynamics and wave analysis in the frequency and time domains: an evaluation of the paradigms. Cham: Springer; 2009.Google Scholar
  36. 36.
    Parker KH. An introduction to wave intensity analysis. Med Biol Eng Comput. 2009;47(2):175.PubMedCrossRefGoogle Scholar
  37. 37.
    Hughes AD, Parker KH, Davies JE. Waves in arteries: a review of wave intensity analysis in the systemic and coronary circulations. Artery Research. 2008;2(2):51–9.CrossRefGoogle Scholar
  38. 38.
    Hughes AD, Parker KH. Forward and backward waves in the arterial system: impedance or wave intensity analysis? Med Biol Eng Comput. 2009;47(2):207.PubMedCrossRefGoogle Scholar
  39. 39.
    Sugawara M, et al. Clinical usefulness of wave intensity analysis. Med Biol Eng Comput. 2009;47(2):197–206.PubMedCrossRefGoogle Scholar
  40. 40.
    Broyd C, et al. Wave intensity analysis and its application to the coronary circulation. Glob Cardiol Sci Pract. 2015:64.CrossRefGoogle Scholar
  41. 41.
    Wang Y, et al. Resonance. The missing phenomenon in hemodynamics. Circ Res. 1991;69(1):246–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Nichols W, O’Rourke M, Vlachopoulos C. Pulsatile pressure - flow relations, in McDonald's blood flow in arteries: theoretical, experimental and clinical principles. Croydon, UK: CRC; 2011. p. 165–94.Google Scholar
  43. 43.
    Wang Y-YL, et al. Theory and applications of the harmonic analysis of arterial pressure pulse waves. J Med Biol Eng. 2010;30(3):125–31.Google Scholar
  44. 44.
    Wehn PS. Pulsatory activity of peripheral arteries. Scand J Clin Lab Invest. 1957;9:1–106.PubMedCrossRefGoogle Scholar
  45. 45.
    Mangel A, Fahim M, van Breemen C. Rhythmic contractile activity of the in vivo rabbit aorta. Nature. 1981;289(5799):692–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Mangel A, Fahim M, Van Breemen C. Control of vascular contractility by the cardiac pacemaker. Science. 1982;215(4540):1627–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Sahibzada N, et al. Rhythmic aortic contractions induced by electrical stimulation in vivo in the rat. PLoS One. 2015;10(7):e0130255.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Nichols W, O’Rourke M, Vlachopoulos C. Contours of pressure and flow waves in arteries, in McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. Croydon, UK: CRC; 2011. p. 225–53.Google Scholar
  49. 49.
    Nichols WW. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens. 2005;18(S1):3S–10S.PubMedCrossRefGoogle Scholar
  50. 50.
    Westerhof N, O’rourke MF. Haemodynamic basis for the development of left ventricular failure in systolic hypertension and for its logical therapy. J Hypertens. 1995;13(9):943–52.PubMedCrossRefGoogle Scholar
  51. 51.
    Rajzer MW, et al. Comparison of aortic pulse wave velocity measured by three techniques: Complior, SphygmoCor and Arteriograph. J Hypertens. 2008;26(10):2001–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Roman MJ, et al. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure. Hypertension. 2007;50(1):197–203.PubMedCrossRefGoogle Scholar
  53. 53.
    O’Rourke MF, Pauca A, Jiang XJ. Pulse wave analysis. Br J Clin Pharmacol. 2001;51(6):507–22.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Nichols WW, Singh BM. Augmentation index as a measure of peripheral vascular disease state. Curr Opin Cardiol. 2002;17(5):543–51.PubMedCrossRefGoogle Scholar
  55. 55.
    Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318–27.PubMedCrossRefGoogle Scholar
  56. 56.
    O’Rourke MF, Adji A. An updated clinical primer on large artery mechanics: implications of pulse waveform analysis and arterial tonometry. Curr Opin Cardiol. 2005;20(4):275–81.PubMedCrossRefGoogle Scholar
  57. 57.
    Westerhof N, Stergiopulos N, Noble MI. Snapshots of hemodynamics: an aid for clinical research and graduate education. Cham: Springer; 2010.CrossRefGoogle Scholar
  58. 58.
    Wesseling K, et al. Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol. 1993;74(5):2566–73.PubMedCrossRefGoogle Scholar
  59. 59.
    Thiele RH, Durieux ME. Arterial waveform analysis for the anesthesiologist: past, present, and future concepts. Anesth Analg. 2011;113(4):766–76.PubMedCrossRefGoogle Scholar
  60. 60.
    De Hert SG, et al. Evaluation of left ventricular function in anesthetized patients using femoral artery dP/dt max. J Cardiothorac Vasc Anesth. 2006;20(3):325–30.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Vlachopoulos C, et al. Music decreases aortic stiffness and wave reflections. Atherosclerosis. 2015;240(1):184–9.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Trappe H-J. The effects of music on the cardiovascular system and cardiovascular health. Heart. 2010;96(23):1868–71.PubMedCrossRefGoogle Scholar
  63. 63.
    Fuchs T. The mechanization of the heart: Harvey and Descartes, vol. 1. Rochester, NY: University of Rochester Press; 2001. p. 247.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Branko Furst
    • 1
  1. 1.Professor of AnesthesiologyAlbany Medical CollegeAlbanyUSA

Personalised recommendations