Advertisement

Microcirculation

  • Branko Furst
Chapter

Abstract

The microcirculation (MC) is a complex network of conduits adapted for exchange of respiratory gases and nutrients. Its large total surface area allows for greatest possible contact between the blood and the tissues. Each segment of the MC is unique in possessing functional and morphologic features adapted to the organ it supplies. Unlike the macrocirculation that is at the core of the pressure-propulsion model, the microcirculation has traditionally been ascribed only a secondary role. With the advent of new methods for in vivo monitoring of microcirculatory function, this view has radically changed. Direct visualization and other ways to quantify microvascular perfusion have uncovered its fundamental hemodynamic role in health and critical illness. Microvascular research has become the “new frontier” in cardiovascular medicine. In this chapter, the following topics are reviewed: morphology and function of the three types of microvascular beds; the role of vascular endothelium in physiological and disease states; the classic Starling principle of the capillary exchange and its revised form; metabolic control of tissue perfusion; the role of red blood cells in control of tissue perfusion and the coherence between the macro- and microcirculations.

Keywords

Microcirculation Types of capillaries Vascular endothelium Capillary fluid dynamics Revised Starling principle Interstitial space Oncotic pressure Negative interstitial pressure Orthogonal polarization spectral imaging Sidestream dark-field imaging Cardiopulmonary bypass Critical illness Fluid therapy Functional capillary density Coherence between macro- and microcirculation 

References

  1. 1.
    Aalkjær C, Boedtkjer D, Matchkov V. Vasomotion–what is currently thought? Acta Physiol. 2011;202(3):253–69.CrossRefGoogle Scholar
  2. 2.
    Pradhan R, Chakravarthy V. Informational dynamics of vasomotion in microvascular networks: a review. Acta Physiol. 2011;201(2):193–218.CrossRefGoogle Scholar
  3. 3.
    Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 2003;314(1):15–23.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Hall CN, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508(7494):55.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res. 2010;2(1):14.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010;87(2):198–210.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Nadel E. In: Boron WF, Boulpaep EL, editors. Regulation of body temperature, in medical physiology: a cellular and molecular approach. Philadelphia: Saunders; 2003. p. 1231–55.Google Scholar
  8. 8.
    Ransom BR. The neuronal microenvironment. In: Boron WF, Boulpaep EL, editors. Medical physiology: a cellular and molecular approach. Philadelphia: Saunders; 2003. p. 399–419.Google Scholar
  9. 9.
    Vallet B. Bench-to-bedside review: endothelial cell dysfunction in severe sepsis: a role in organ dysfunction? Crit Care. 2003;7(2):130.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Collins SR, et al. The endothelial glycocalyx: emerging concepts in pulmonary edema and acute lung injury. Anesth Analg. 2013;117(3):664.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Alphonsus C, Rodseth R. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia. 2014;69(7):777–84.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007;7(10):803.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19(4):312–26.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Levick J. Capillary filtration-absorption balance reconsidered in light of dynamic extravascular factors. Exp Physiol. 1991;76(6):825–57.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Adamson R, et al. Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J Physiol. 2004;557(3):889–907.PubMedCentralCrossRefGoogle Scholar
  16. 16.
    Krogh A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol. 1919;52(6):409–15.PubMedCentralCrossRefGoogle Scholar
  17. 17.
    Ellsworth ML, et al. Role of microvessels in oxygen supply to tissue. Physiology. 1994;9(3):119–23.CrossRefGoogle Scholar
  18. 18.
    Tsai AG, Johnson PC, Intaglietta M. Oxygen gradients in the microcirculation. Physiol Rev. 2003;83(3):933–63.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ellis C, Wrigley S, Groom A. Heterogeneity of red blood cell perfusion in capillary networks supplied by a single arteriole in resting skeletal muscle. Circ Res. 1994;75(2):357–68.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Arciero JC, Carlson BE, Secomb TW. Theoretical model of metabolic blood flow regulation: roles of ATP release by red blood cells and conducted responses. Am J Phys Heart Circ Phys. 2008;295(4):H1562–71.Google Scholar
  21. 21.
    Carlson BE, Arciero JC, Secomb TW. Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses. Am J Phys Heart Circ Phys. 2008;295(4):H1572–9.Google Scholar
  22. 22.
    Walley KR. Heterogeneity of oxygen delivery impairs oxygen extraction by peripheral tissues: theory. J Appl Physiol. 1996;81(2):885–94.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Wang L, Maslov K, Wang LV. Single-cell label-free photoacoustic flowoxigraphy in vivo. Proc Natl Acad Sci. 2013;110(15):5759–64.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Narla M. Structure and composition of the erythrocyte. In: Kaushansky K, editor. Williams hematology. 9th ed. New York: McGraw-Hill Education; 2015.Google Scholar
  25. 25.
    Gov N, Safran S. Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects. Biophys J. 2005;88(3):1859–74.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Unger P, et al. Reduction of left ventricular diameter and mass after surgical arteriovenous fistula closure in renal transplant recipients. Transplantation. 2002;74(1):73–9.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol. 2005;5(8):606.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ellsworth ML, et al. The erythrocyte as a regulator of vascular tone. Am J Phys Heart Circ Phys. 1995;269(6):H2155–61.Google Scholar
  29. 29.
    Ellsworth ML. Red blood cell-derived ATP as a regulator of skeletal muscle perfusion. Med Sci Sports Exerc. 2004;36(1):35.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Cortese-Krott MM, Kelm M. Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function? Redox Biol. 2014;2:251–8.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Diesen DL, Hess DT, Stamler JS. Hypoxic vasodilation by red blood cells. Circ Res. 2008;103(5):545–53.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Farias M III, et al. Plasma ATP during exercise: possible role in regulation of coronary blood flow. Am J Phys Heart Circ Phys. 2005;288(4):H1586–90.Google Scholar
  33. 33.
    Baek EB, et al. Luminal ATP-induced contraction of rabbit pulmonary arteries and role of purinoceptors in the regulation of pulmonary arterial pressure. Pflügers Archiv European Journal of Physiology. 2008;457(2):281–91.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Deem S. In: And Exercise H, Roach RC, Wagner PD, Hackett PH, editors. Red blood cells and hemoglobin in hypoxic pulmonary vasoconstriction. New York: Springer Science+Business Media; 2006. p. 217–31.Google Scholar
  35. 35.
    Deem S, et al. Red blood cells prevent inhibition of hypoxic pulmonary vasoconstriction by nitrite in isolated, perfused rat lungs. Am J Phys Heart Circ Phys. 2007;292(2):H963–70.Google Scholar
  36. 36.
    Zweifach B, et al. Reactions of peripheral blood vessels in experimental hemorrhage. Ann N Y Acad Sci. 1948;49(1):553–70.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Klijn E, et al. The heterogeneity of the microcirculation in critical illness. Clin Chest Med. 2008;29(4):643–54.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care. 2015;19(3):S8.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Atasever B, et al. Distinct alterations in sublingual microcirculatory blood flow and hemoglobin oxygenation in on-pump and off-pump coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2011;25(5):784–90.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kara A, Akin S, Ince C. The response of the microcirculation to cardiac surgery. Current Opinion in Anesthesiology. 2016;29(1):85–93.CrossRefGoogle Scholar
  41. 41.
    Parratt JR. Nitric oxide in sepsis and endotoxaemia. J Antimicrob Chemother. 1998;41(suppl 1):31–9.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Durán WN, Breslin JW, Sánchez FA. The NO cascade, eNOS location, and microvascular permeability. Cardiovasc Res. 2010;87(2):254–61.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Hollenberg SM, Cunnion RE, Zimmerberg J. Nitric oxide synthase inhibition reverses arteriolar hyporesponsiveness to catecholamines in septic rats. Am J Phys Heart Circ Phys. 1993;264(2):H660–3.Google Scholar
  44. 44.
    Ince C. The microcirculation is the motor of sepsis. Crit Care. 2005;9:13.CrossRefGoogle Scholar
  45. 45.
    Johnson PC. Autoregulation of blood flow. Circ Res. 1986;59(5):483–95.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    De Backer D, Ortiz JA, Salgado D. Coupling microcirculation to systemic hemodynamics. Curr Opin Crit Care. 2010;16(3):250.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Jhanji S, et al. The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock. Crit Care Med. 2009;37(6):1961–6.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Dubin A, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;13(3):R92.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hernández G, Teboul J-L. Fourth surviving Sepsis Campaign’s hemodynamic recommendations: a step forward or a return to chaos? Crit Care. 2017;21(1):133.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    De Backer D, et al. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166(1):98–104.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Boerma EC, et al. Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: a double-blind randomized placebo controlled trial. Crit Care Med. 2010;38(1):93–100.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Morelli A, et al. Levosimendan for resuscitating the microcirculation in patients with septic shock: a randomized controlled study. Crit Care. 2010;14(6):R232.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Wei C, et al. Effects of low doses of esmolol on cardiac and vascular function in experimental septic shock. Crit Care. 2016;20(1):407.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Boerma EC, et al. Disparity between skin perfusion and sublingual microcirculatory alterations in severe sepsis and septic shock: a prospective observational study. Intensive Care Med. 2008;34(7):1294–8.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Ince C. The rationale for microcirculatory guided fluid therapy. Curr Opin Crit Care. 2014;20(3):301–8.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Sakr Y, et al. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock∗. Crit Care Med. 2004;32(9):1825.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Fries M, et al. Microcirculation during cardiac arrest and resuscitation. Crit Care Med. 2006;34(12):S454–7.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Hunter J, Doddi M. Sepsis and the heart. Br J Anaesth. 2010;104(1):3–11.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Boulpaep E. In: Boron WF, Boulpaep EL, editors. Organization of the cardiovasuclar system in medical physiology: a cellular and molecular approach. Philadelphia: Saunders; 2003. p. 423–46.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Branko Furst
    • 1
  1. 1.Professor of AnesthesiologyAlbany Medical CollegeAlbanyUSA

Personalised recommendations