Advertisement

Circulatory and Respiratory Functions of the Blood

  • Branko Furst
Chapter

Abstract

The concept of mean circulatory pressure (MCP) is based on a manufactured phenomenon which fails to account for the movement of blood after cardiac arrest. Direct observations of microvascular beds in experimental animals confirm vestigial movement of the blood in direction of the heart up to 30 min following the cessation of heart’s contractions. Observations on patients and dogs in deep hypothermic arrest confirm persistent movement of blood against the pressure gradient. The phenomenon of spontaneous return of circulation (SROC) after cardiac arrest and “failed” resuscitation is well-described in the literature. Further discussed are: interstitial pressure (IP) as a marker of the rate of fluid movement across the capillary membrane; negative interstitial pressure and its importance in the maintenance of constant intravascular volume, normal organ function, and facilitation of wound healing; historical development of the concepts of vis á fronte (force from the front) and vis a tergo (force from behind) in relation to heart and capillary actions. The introduction of mechanical respiration gradually obscured the importance of pulmonary microvascular beds for left ventricular filling. It marks the transition from the “hemocentric” view of circulation, where microvascular beds are seen as the principal source of blood propulsion, to a “cardiocentric” view where this role is ascribed to the heart.

Keywords

Vestigial circulation Mean circulatory pressure Blood’s “motor energy” Cardiac arrest Spontaneous return of circulation Rete mirabile Negative interstitial pressure Interstitial space Total body water Wound VAC therapy Negative pressure pulmonary edema Negative intrapleural pressure Mechanical lung ventilation 

References

  1. 1.
    Rothe CF. Mean circulatory filling pressure: its meaning and measurement. J Appl Physiol. 1993;74(2):499–509.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Guyton AC, Polizo D, Armstrong GG. Mean circulatory filling pressure measured immediately after cessation of heart pumping. Am J Physiol. 1954;179(2):261–7.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 1955;35(1):123–9.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Guyton AC, Satterfield JH, Harris JW. Dynamics of central venous resistance with observations on static blood pressure. Am J Physiol. 1952;169(3):691–9.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Starr I. Role of “static blood pressure” in abnormal increments of venous pressure, especially in heart failure. II. Clinical and experimental studies. Am J Med Sci. 1940;199:40–55.CrossRefGoogle Scholar
  6. 6.
    Thompson S. The effect of pulmonary inflation and deflation upon the circulation. J Thorac Surg. 1948;17(3):323.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Manteuffel-Szoege L, et al. On the possibility of blood circulation continuing after stopping the heart. J Cardiovasc Surg (Torino). 1966;7(3):201.Google Scholar
  8. 8.
    Manteuffel-Szoege L. Remarks on blood flow. (The problem of the specific haemodynamic properties of blood). J Cardiovasc Surg (Torino). 1969;10(1):22.Google Scholar
  9. 9.
    Manteuffel-Szoege L. New observations concerning the hemodynamics of deep hypothermia. J Cardiovasc Surg (Torino). 1962;3:316–9.Google Scholar
  10. 10.
    Manteuffel-Szoege L. Hemodynamic disturbances in normo and hypothermia with excluded heart and during acute heart muscle failure. J Cardiovasc Surg (Torino). 1963;4:551–5.Google Scholar
  11. 11.
    Lindsey AW, Guyton AC. Continuous recording of pulmonary blood volume: pulmonary pressure and volume changes. Am J Physiol. 1959;197(5):959–62.PubMedCrossRefGoogle Scholar
  12. 12.
    Manteuffel-Szoege L. On stopping and restarting of circulation in deep hypothermia. J Cardiovasc Surg (Torino). 1964;5:76–80.Google Scholar
  13. 13.
    Manteuffel-Szoege L. Energy sources of blood circulation and the mechanical action of the heart. Thorax. 1960;15(1):47.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Skulec R, et al. Novel patterns of left ventricular mechanical activity during experimental cardiac arrest in pigs. Physiol Res. 2018;67(3):391–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Yannopoulos D, et al. Controlled pauses at the initiation of sodium nitroprusside-enhanced cardiopulmonary resuscitation facilitate neurological and cardiac recovery after 15 mins of untreated ventricular fibrillation. Crit Care Med. 2012;40(5):1562–9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Adebahr G, Weiler G. [Distribution of blood in the kidney by death from exsanguination (author’s transl)]. Z Rechtsmed. 1977;80(1):9.CrossRefGoogle Scholar
  17. 17.
    Thudichum I. On the cause of the emptiness of the arteries after death. Assoc Med J. 1855;3(110):122–7.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Flanagan R, Amin A, Seinen W. Effect of post-mortem changes on peripheral and central whole blood and tissue clozapine and norclozapine concentrations in the domestic pig (Sus scrofa). Forensic Sci Int. 2003;132(1):9–17.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    De Letter EA, et al. Post-mortem redistribution of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) in the rabbit. Int J Leg Med. 2002;116(4):216–24.CrossRefGoogle Scholar
  20. 20.
    Pounder DJ, Jones GR. Post-mortem drug redistribution—a toxicological nightmare. Forensic Sci Int. 1990;45(3):253–63.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Adhiyaman V, Adhiyaman S, Sundaram R. The Lazarus phenomenon. J R Soc Med. 2007;100(12):552–7.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Ben-David B, et al. Survival after failed intraoperative resuscitation: a case of “Lazarus syndrome”. Anesth Anal. 2001;92(3):690.CrossRefGoogle Scholar
  23. 23.
    Hornby K, Hornby L, Shemie S. A systematic review of autoresuscitation after cardiac arrest. Crit Care Med. 2010;38(5):1246.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Flato UAP, et al. Echocardiography for prognostication during the resuscitation of intensive care unit patients with non-shockable rhythm cardiac arrest. Resuscitation. 2015;92:1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Breitkreutz R, et al. Focused echocardiographic evaluation in life support and peri-resuscitation of emergency patients: a prospective trial. Resuscitation. 2010;81(11):1527–33.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Meaney PA, et al. Cardiopulmonary resuscitation quality: improving cardiac resuscitation outcomes both inside and outside the hospital. Circulation. 2013;128(4):417–35.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Aagaard R, et al. Echocardiography during resuscitation: a paradox of right ventricular dilatation in cardiac arrest caused by hypovolemia and hyperkalemia-a randomized porcine study. Am Heart Assoc; 2016.Google Scholar
  28. 28.
    Aukland K, Reed R. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev. 1993;73(1):1–78.PubMedCrossRefGoogle Scholar
  29. 29.
    Giesecke A Jr, Grande C, Whitten C. Fluid therapy and the resuscitation of traumatic shock. Crit Care Clin. 1990;6(1):61–72.PubMedCrossRefGoogle Scholar
  30. 30.
    Guyton AC, Granger HJ, Taylor AE. Interstitial fluid pressure. Physiol Rev. 1971;51(3):527–63.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Nadel E. Regulation of body temperature. In: Boron WF, Boulpaep EL, editors. Medical physiology: a cellular and molecular approach. Philadelphia: Saunders; 2003. p. 1231–55.Google Scholar
  32. 32.
    Agre P, et al. Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol. 1993;265(4):F463–76.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Day RE, et al. Human aquaporins: regulators of transcellular water flow. Biochim Biophys Acta. 2014;1840(5):1492–506.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Verkman AS, Anderson MO, Papadopoulos MC. Aquaporins: important but elusive drug targets. Nat Rev Drug Discov. 2014;13(4):259.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Brinker T, et al. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014;11(1):10.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Davenport HW. Intestinal absorbtion of water. In: Davenport HW, editor. Physiology of the digestive tract. Chicago: Year Book Medical Publishers; 1971. p. 171–82.Google Scholar
  37. 37.
    Brace RA. Progress toward resolving the controversy of positive vs. negative interstitial fluid pressure. Circ Res. 1981;49(2):281–97.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Guyton AC, Frank M, Abernathy B. A concept of negative interstitial pressure based on pressures in implanted perforated capsules. Circ Res. 1963;12(4):399–414.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Adair TH, et al. Effect of skin concavity on subcutaneous tissue fluid pressure. Am J Physiol. 1991;261(2):H349–53.PubMedGoogle Scholar
  40. 40.
    Scholander P, Hargens AR, Miller SL. Negative pressure in the interstitial fluid of animals. Science. 1968;161(3839):321–8.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Matthay MA. Resolution of pulmonary edema. Thirty years of progress. Am J Respir Crit Care Med. 2014;189(11):1301–8.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Udeshi A, Cantie SM, Pierre E. Postobstructive pulmonary edema. J Crit Care. 2010;25(3):538.e1–5.CrossRefGoogle Scholar
  43. 43.
    Fiorelli A, et al. Negative-pressure pulmonary edema presented with concomitant spontaneous pneumomediastinum: Moore meets Macklin. Interact Cardiovasc Thorac Surg. 2011;12(4):633–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Schumann R, Polaner DM. Massive subcutaneous emphysema and sudden airway compromise after postoperative vomiting. Anesth Anal. 1999;89(3):796.Google Scholar
  45. 45.
    Yang S-C, et al. Subcutaneous emphysema and pneumomediastinum secondary to dental extraction: a case report and literature review. Kaohsiung J Med Sci. 2006;22(12):641–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Bissen-Miyajima H, et al. Role of the endothelial pump in flap adhesion after laser in situ keratomileusis. J Cataract Refract Surg. 2004;30(9):1989–92.CrossRefGoogle Scholar
  47. 47.
    Wiig H, Reed R. Compliance of the interstitial space in rats II. Studies on skin. Acta Physiol. 1981;113(3):307–15.CrossRefGoogle Scholar
  48. 48.
    Reed R, Rodt S. Increased negativity of interstitial fluid pressure during the onset stage of inflammatory edema in rat skin. Am J Physiol. 1991;260(6):H1985–91.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Lund T, Wiig H, Reed R. Acute postburn edema: role of strongly negative interstitial fluid pressure. Am J Physiol. 1988;255(5):H1069–74.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Wiig H, Rubin K, Reed R. New and active role of the interstitium in control of interstitial fluid pressure: potential therapeutic consequences. Acta Anaesthesiol Scand. 2003;47(2):111–21.PubMedCrossRefGoogle Scholar
  51. 51.
    Fleischmann W, et al. Vacuum sealing as treatment of soft tissue damage in open fractures. Unfallchirurg. 1993;96(9):488–92.PubMedGoogle Scholar
  52. 52.
    Argenta LC, Morykwas MJ. Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. Ann Plast Surg. 1997;38(6):563–77.PubMedCrossRefGoogle Scholar
  53. 53.
    Venturi ML, et al. Mechanisms and clinical applications of the vacuum-assisted closure (VAC) device. Am J Clin Dermatol. 2005;6(3):185–94.PubMedCrossRefGoogle Scholar
  54. 54.
    Schintler M. Negative pressure therapy: theory and practice. Diabetes Metab Res Rev. 2012;28(S1):72–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Morykwas MJ, et al. Vacuum-assisted closure: state of basic research and physiologic foundation. Plast Reconstr Surg. 2006;117(7S):121S–6S.PubMedCrossRefGoogle Scholar
  56. 56.
    Prioreschi P. A history of medicine, vol. 3. Omaha: Horatius Press; 1996.Google Scholar
  57. 57.
    Siegel RE. Galen’s system of physiology and medicine. Basel: Karger; 1968. p. 83–102.Google Scholar
  58. 58.
    Siegel RE. Respiration and combustion. In: Siegel RE, editor. Galen’s system of physiology and medicine. Basel: Karger; 1968. p. 135–82.Google Scholar
  59. 59.
    Siegel RE. The substrate of biological function. In: Siegel RE, editor. Galen’s system of physiology and medicine. Basel: Karger; 1968. p. 183–92.Google Scholar
  60. 60.
    Fuchs T. De motu locali animalium. In: Fuchs T, editor. Mechanization of the heart: Harvey and Descartes. Rocherter: University Rochester Press; 2001. p. 62–75.Google Scholar
  61. 61.
    Siegel RE. Why Galen and Harvey did not compare the heart to a pump. Am J Cardiol. 1967;20(1):117–21.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Harvey W. Of the motive spirit. In: Whitteridge G, editor. De motu locali animalium. Cambridge: Royal College of Phyicians; 1959. p. 95–105.Google Scholar
  63. 63.
    Baker AB. Artificial respiration, the history of an idea. Med Hist. 1971;15(4):336–51.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Fishman A. Dynamics of the pulmonary circulation. Handbook of physiology. Circulation. 1963;2:1667–743.Google Scholar
  65. 65.
    Fuchs T. The mechanization of the heart: Harvey and Descartes, vol. 1. Rochester: University of Rochester Press; 2001. p. 247.Google Scholar
  66. 66.
    Scholander PF, et al. Sap pressure in vascular plants. Science. 1965;148(3668):339–46.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Brecher GA. Venous return. New York: Grune & Stratton; 1956.Google Scholar
  68. 68.
    Wiggers CJ. The ciruclation and ciruclation research in perspective. In: Hamilton WF, Dow P, editors. Handbook of physiology. Washington, DC: American Physiological Society; 1962. p. 1–9.Google Scholar
  69. 69.
    Guyton AC, Jones CE, Coleman TGCE. Circulatory physiology: cardiac output and its regulation. Philadelphia: Saunders; 1973. p. 238.Google Scholar
  70. 70.
    Brecher GA. Critical review of recent work on ventricular diastolic suction. Circ Res. 1958;6(5):554–66.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Pettigrew JB. Design in nature, vol. 2. London: Longmans, Green and Co; 1908.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Branko Furst
    • 1
  1. 1.Professor of AnesthesiologyAlbany Medical CollegeAlbanyUSA

Personalised recommendations