Regulation of Cardiac Output

  • Branko Furst


Models are used to simplify a group of observable events into readily understandable concepts. Over the years, numerous models of circulation have been developed in an effort to elucidate fundamental hemodynamic principles. They attest to the ingenuity on the part of the investigators but also point to the complexity of the subject at hand. Because the heart is the organ which is thought to provide the total hydraulic energy to the blood, the idea of the heart as a pressure-generating pump is implicit in most commonly used models. Just how much of a role the heart plays in blood propulsion and the relative contribution of the peripheral circulation in the regulation of cardiac output is a matter of ongoing debate. Because of the multitude of factors which contribute to the regulation of cardiac output, the subject will be approached from the two commonly used perspectives: that of the heart and of the peripheral circulation. The left ventricular (LV) view purports that the heart is the sole source of blood propulsion and hence the principal controller of cardiac output. Guyton’s “venous return” (VR) model posits, on the contrary, that the peripheral circulation is the main determinant of cardiac output and the heart plays a secondary role. LV and VR views are reviewed and critiqued for their conceptual and methodological inconsistencies. Trends in the pharmacologic therapy of heart failure and the declining use of intra-aortic balloon pumps speak in favor of the peripheral circulation as the principal determinant of cardiac output.


Circulation models Left ventricular model Guyton’s venous return model Cardiac output Weber’s circulation model Peripheral resistance Elastic recoil Mean circulatory pressure Ohm’s law Heart failure therapy Aortic balloon pump 


  1. 1.
    Magder S. The classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol. 2006;101(5):1533.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Magder S. Point: counterpoint: the classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol. 2006;101(5):1523–5.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Brengelmann G. Counterpoint: the classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is not correct. J Appl Physiol. 2006;101(5):1525–6.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Brengelmann GL. The classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol. 2006;101(5):1532.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Pinsky MR. The classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol. 2006;101(5):1528–30.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Guyton AC, Jones CE, Coleman TG. Circulatory physiology: cardiac output and its regulation. Philadelphia: Saunders WB; 1973. p. 253–62.Google Scholar
  7. 7.
    Fuchs T. De motu locali animalium. In: Mechanization of the heart: Harvey and Descartes. Rocherter: University Rochester Press; 2001. p. 62–75.Google Scholar
  8. 8.
    Harvey W. On the generation of animals (Translated by R. Willis). In: Hutchins RM, editor. Great Books of the Western World Encycl. Britannica. Chicago: Encyclopedia Britannica; 1952. p. 429–32.Google Scholar
  9. 9.
    Siegel RE. Why Galen and Harvey did not compare the heart to a pump. Am J Cardiol. 1967;20(1):117–21.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Siegel RE. Galen’s system of physiology and medicine. Basel: Karger; 1968. p. 83–102.Google Scholar
  11. 11.
    Harvey W. A second disquisition to John Riolan (Translated by R. Willis). In: Hutchins RM, editor. Great Books of the Western World. Chicago: Encyclopedia Britannica; 1952. p. 313–28.Google Scholar
  12. 12.
    Harvey W. An anatomical disquisition on the motion of the heart and blood. In: Hutchins RM, editor. Animals in Great Books of the Western World. Chicago: Encyclopedia Britannica; 1952. p. 276–8.Google Scholar
  13. 13.
    Aristotle. Physics, Book 8, Ch. 8. In: Barnes J, editor. Complete works of Aristotle, volume 1: the revised Oxford translation. Princeton: Princeton University Press; 1984. p. 437–42.Google Scholar
  14. 14.
    Vijaya GK. Celestial dynamics and rotational forces in circular and elliptical motions. 2018.; [accessed 08.30.2019].
  15. 15.
    Pagel W. The philosophy of Circles–Cesalpino–Harvey: a penultimate assessment. J Hist Med Allied Sci. 1957;12(2):140–57.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Harvey W. An anatomical disquisition on the motion of the heart and blood in animals (translated by R. Willis). In: Hutchins RM, editor. Great Books of the Western World. Chicago: Encyclopedia Britannica; 1952. p. 285–6.Google Scholar
  17. 17.
    Wright T. Circulation: William Harvey’s revolutionary idea. London: Chatto & Windus; 2012. p. 205–9.Google Scholar
  18. 18.
    Simms E-M. Goethe, Husserl, and the crisis of the European sciences. Janus Head. 2005;8(1):160–72.Google Scholar
  19. 19.
    Fuchs T. The mechanization of the heart: Harvey and Descartes, vol. 1. Rochester: University of Rochester Press; 2001. p. 247.Google Scholar
  20. 20.
    Lynch JJ. The vital sign. In: Lynch JJ, editor. The language of the heart: the body’s response to human dialogue. New York: Basic Books (AZ); 1985. p. 29–49.Google Scholar
  21. 21.
    Hall TS. Ideas of life and matter: studies in the history of general physiology, 600 BC-1900 AD. Chicago: University of Chicago Press; 1969. p. 241–9.Google Scholar
  22. 22.
    Pickering G. Systemic arterial hypertension. In: Fishman AP, Richards DW, editors. Circulation of the blood men and ideas. Bethesda: American Physiological Society; 1982. p. 487–541.Google Scholar
  23. 23.
    Husemann F, Wolff O. The anthroposophical approach to medicine. London: Rudolf Steiner Press; 1987. p. 298–414.Google Scholar
  24. 24.
    Hales S. Statistical essays: containing haemastaticks no. 22, reprinted. History of medicine series, vol 2, 1964. Library of New York Academy of Medicine. New York: Hafner Publishing, 1733.Google Scholar
  25. 25.
    Booth J. A short history of blood pressure measurement. Proc R Soc Med. 1977;70(11):793–9.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Nichols WW, O’Rourke MF. McDonald’s blood flow in arteries: theoretic, experimental, and clinical principles. Philadelphia: Lea & Fabiger; 1990. p. 12–53.Google Scholar
  27. 27.
    Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010;87:198–210.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Fishman A. Dynamics of the pulmonary circulation. In: Hamilton WF, Dow P, editors. Handbook of physiology section 2: Circulation, vol. 2. Washington, DC: American Physiological Society; 1963. p. 1667–743.Google Scholar
  29. 29.
    Westerhof N, Stergiopulos N, Noble MI. Snapshots of hemodynamics: an aid for clinical research and graduate education. New York: Springer; 2010. p. 233–7.CrossRefGoogle Scholar
  30. 30.
    Grodins FS, Stuart WH, Veenstra RL. Performance characteristics of the right heart bypass preparation. Am J Physiol. 1960;198(3):552.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Herndon C, Sagawa K. Combined effects of aortic and right atrial pressures on aortic flow. Am J Physiol. 1969;217(1):65–72.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Levy MN. The cardiac and vascular factors that determine systemic blood flow. Circ Res. 1979;44(6):739.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Calbet J, et al. Effects of ATP-induced leg vasodilation on VO2 peak and leg O2 extraction during maximal exercise in humans. Am J Physiol Regul Integr Comp Physiol. 2006;291(2):R447–53.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Laughlin MH. Skeletal muscle blood flow capacity: role of muscle pump in exercise hyperemia. Am J Physiol. 1987;253(5):H993–H1004.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–8.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Michard F. Volume management using dynamic parameters. Chest. 2005;128(4):1902–3.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Coudray A, et al. Fluid responsiveness in spontaneously breathing patients: a review of indexes used in intensive care. Crit Care Med. 2005;33(12):2757.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Binanay C, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA. 2005;294(13):1625.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kumar A, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32(3):691.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Ma TS, et al. Central venous pressure and pulmonary capillary wedge pressure: fresh clinical perspectives from a new model of discordant and concordant heart failure. Tex Heart Inst J. 2011;38(6):627.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Halpern SD, Taichman DB. Misclassification of pulmonary hypertension due to reliance on pulmonary capillary wedge pressure rather than left ventricular end-diastolic pressure. Chest. 2009;136(1):37–43.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Bernstein WH, et al. The interpretation of pulmonary artery wedge (pulmonary capillary) pressures. Br Heart J. 1960;22(1):37.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Weed H. Pulmonary “capillary” wedge pressure not the pressure in the pulmonary capillaries. Chest. 1991;100(4):1138–40.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Samet P, et al. Clinical and physiologic relationships in mitral valve disease. Circulation. 1959;19(4):517–30.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Cowley AW Jr, Guyton AC. Heart rate as a determinant of cardiac output in dogs with arteriovenous fistula. Am J Cardiol. 1971;28(3):321–5.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Stein E, et al. The relation of heart rate to cardiovascular dynamics. Pacing by atrial electrodes. Circulation. 1966;33(6):925.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Ross J Jr, Linhart JW, Braunwald E. Effects of changing heart rate in man by electrical stimulation of the right atrium: studies at rest, during exercise, and with isoproterenol. Circulation. 1965;32(4):549–58.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Braunwald E, et al. Clinical observations on paired electrical stimulation of the heart:: effects on ventricular performance and heart rate. Am J Med. 1964;37(5):700–11.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Goldberg LI. Use of sympathomimetic amines in heart failure. Am J Cardiol. 1968;22(2):177–82.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Elliott WC, Gorlin R. Isoproterenol in treatment of heart disease hemodynamic effects in circulatory failure. JAMA. 1966;197(5):315–20.PubMedCrossRefGoogle Scholar
  51. 51.
    Bayram M, et al. Reassessment of dobutamine, dopamine, and milrinone in the management of acute heart failure syndromes. Am J Cardiol. 2005;96(6A):47G.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Fonarow G. The Acute Decompensated Heart Failure National Registry (ADHERE): opportunities to improve care of patients hospitalized with acute decompensated heart failure. Rev Cardiovasc Med. 2003;4(Suppl 7):S21.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Abraham WT, et al. In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the Acute Decompensated Heart Failure National Registry (ADHERE). J Am Coll Cardiol. 2005;46(1):57–64.PubMedCrossRefGoogle Scholar
  54. 54.
    Coons JC, McGraw M, Murali S. Pharmacotherapy for acute heart failure syndromes. Am J Health Syst Pharm. 2011;68(1):21–35.PubMedCrossRefGoogle Scholar
  55. 55.
    Swedberg K, et al. Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005) The Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology. Eur Heart J. 2005;26(11):1115–40.PubMedCrossRefGoogle Scholar
  56. 56.
    Kantrowitz A, et al. Mechanical intraaortic cardiac assistance in cardiogenic shock: hemodynamic effects. Arch Surg. 1968;97(6):1000.PubMedCrossRefGoogle Scholar
  57. 57.
    O’Connor CM, Rogers JG. Evidence for overturning the guidelines in cardiogenic shock. N Engl J Med. 2012;367(14):1349–50.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Thiele H, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367(14):1287–96.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Sjauw KD, Piek JJ. Is the intra-aortic balloon pump leaking? Lancet. 2013;382(9905):1616–7.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Su D, et al. Intra-aortic balloon pump may grant no benefit to improve the mortality of patients with acute myocardial infarction in short and long term: an updated meta-analysis. Medicine. 2015;94(19):e876.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ambrosy AP, et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol. 2014;63(12):1123–33.PubMedCrossRefGoogle Scholar
  62. 62.
    Go AS, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129:e28–e292.PubMedCrossRefGoogle Scholar
  63. 63.
    Roger VL. Epidemiology of heart failure. Circ Res. 2013;113(6):646–59.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Packer M. Unbelievable folly of clinical trials in heart failure. Circ Heart Fail. 2016;9(4):e002837.PubMedCrossRefGoogle Scholar
  65. 65.
    Schulze U. Herzinsuffizienztherapie in der modernen Kardiologie - is die Pumpenvorstellung des herzens zutreffend? Der Merkurstab. 2006;59(6):480–7.Google Scholar
  66. 66.
    Alexander W. Branko Furst’s radical alternative: is the heart moved by the blood, rather than vice versa? P T. 2017;42(1):33–9.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Furst B. The heart: pressure-propulsion pump or organ of impedance? J Cardiothorac Vasc Anesth. 2015;29(6):1688–701.PubMedCrossRefGoogle Scholar
  68. 68.
    Parker KH. A brief history of arterial wave mechanics. Med Biol Eng Comput. 2009;47(2):111–8.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Weber EH. Ueber die Anwendung der Wellenlehre auf die Lehre vom Kreislaufe des Blutes und insbesondere auf die Pulslehre. Leipzig: Berichte ueber die Verhandlungen, Koenigl. Saechsische Gesellschaft der Wissenschaften; 1850. p. 164–204.Google Scholar
  70. 70.
    Jacobsohn E, Chorn R, O’Connor M. The role of the vasculature in regulating venous return and cardiac output: historical and graphical approach. Can J Anesth. 1997;44(8):849–67.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Starling EH. The Arris and Gale lectures on some points in the pathology of heart disease, Lecture II. Lancet. 1897;149(3836):652–5.CrossRefGoogle Scholar
  72. 72.
    Bayliss W, Starling EH. Observations on venous pressures and their relationship to capillary pressures. J Physiol. 1894;16(3–4):159.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Starling EH. The Linacre lecture on the law of the heart. London: Longmans, Green & Co; 1918.Google Scholar
  74. 74.
    Starr I, Rawson A. Role of “static blood pressure” in abnormal increments of venous pressure, especially in hear failure. I. Theoretical studies on an improved circulation schema whose pumps obey Starling’s law of the heart. Am J Med Sci. 1940;199:27–39.CrossRefGoogle Scholar
  75. 75.
    Starr I. Role of “static blood pressure” in abnormal increments of venous pressure, especially in heart failure. II. Clinical and experimental studies. Am J Med Sci. 1940;199:40–55.CrossRefGoogle Scholar
  76. 76.
    Patterson S, Starling E. On the mechanical factors which determine the output of the ventricles. J Physiol. 1914;48(5):357.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Guyton AC, Jones CE, Coleman TG. Circulatory physiology: cardiac output and its regulation. Philadelphia: Saunders; 1973. p. 238.Google Scholar
  78. 78.
    Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 1955;35(1):123–9.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Guyton AC, et al. Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol. 1957;189(3):609.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Guyton AC, Lindsey AW, Kaufmann BN. Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output. Am J Physiol. 1955;180(3):463–8.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Guyton AC, Polizo D, Armstrong GG. Mean circulatory filling pressure measured immediately after cessation of heart pumping. Am J Physiol. 1954;179(2):261–7.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Brengelmann GL. A critical analysis of the view that right atrial pressure determines venous return. J Appl Physiol. 2003;94(3):849.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Guyton AC. The relationship of cardiac output and arterial pressure control. Circulation. 1981;64(6):1079–88.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Caldini P, et al. Effect of epinephrine on pressure, flow, and volume relationships in the systemic circulation of dogs. Circ Res. 1974;34(5):606–23.CrossRefGoogle Scholar
  85. 85.
    Sylvester J, Goldberg H, Permutt S. The role of the vasculature in the regulation of cardiac output. Clin Chest Med. 1983;4(2):111.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Permutt S, Caldini P. Regulation of cardiac output by the circuit: venous return. In: Baan J, Noordegraff A, Raines J, editors. Cardiovasuclar system dynamics. Cambrige: MIT Press; 1987. p. 465–79.Google Scholar
  87. 87.
    Tyberg JV. How changes in venous capacitance modulate cardiac output. Pflügers Archiv. 2002;445(1):10–7.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Magder S, De Varennes B. Clinical death and the measurement of stressed vascular volume. Crit Care Med. 1998;26(6):1061–4.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Maas JJ, et al. Assessment of venous return curve and mean systemic filling pressure in postoperative cardiac surgery patients. Crit Care Med. 2009;37(3):912.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Pinsky MR. Instantaneous venous return curves in an intact canine preparation. J Appl Physiol. 1984;56(3):765–71.PubMedCrossRefGoogle Scholar
  91. 91.
    Versprille A, et al. Mean systemic filling pressure as a characteristic pressure for venous return. Pfluegers Arch. 1985;405(3):226–33.CrossRefGoogle Scholar
  92. 92.
    Hiesmayr M, Jansen JRC, Versprille A. Effects of endotoxin infusion on mean systemic filling pressure and flow resistance to venous return. Pfluegers Arch. 1996;431(5):741–7.CrossRefGoogle Scholar
  93. 93.
    Schipke J, et al. Static filling pressure in patients during induced ventricular fibrillation. Am J Physiol Heart Circ Physiol. 2003;285(6):H2510.PubMedCrossRefGoogle Scholar
  94. 94.
    Berger DC, et al. Effect of PEEP, blood volume, and inspiratory hold maneuvers on venous return. Am J Physiol Heart Circ Physiol. 2016;311(3):H794–806. Scholar
  95. 95.
    Henderson WR, et al. Clinical review: Guyton-the role of mean circulatory filling pressure and right atrial pressure in controlling cardiac output. Crit Care. 2010;14(6):243.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Guyton AC. Editor’s note, A. Guytons comment on Levy’s article: The cardiac and vascular factors that determine systemic blood flow. Circ Res. 1979;44(6):746–7.Google Scholar
  97. 97.
    Reddi B, Carpenter R. Venous excess: a new approach to cardiovascular control and its teaching. J Appl Physiol. 2005;98(1):356.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Brengelmann G. Steady-state venous return: residue in a recent model analysis of the notion that it is driven by elastic recoil of the venous system. J Appl Physiol. 2009;107(1):369.PubMedCrossRefGoogle Scholar
  99. 99.
    Brengelmann GL. Learning opportunities in the study of Curran-Everett’s exploration of a classic paper on venous return. Adv Physiol Educ. 2008;32(3):242–3.PubMedCrossRefGoogle Scholar
  100. 100.
    Beard DA, Feigl EO. Understanding Guyton’s venous return curves. Am J Physiol Heart Circ Physiol. 2011;301(3):H629–33.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Mitchell JR. Is the heart a pressure or flow generator? Possible implications and suggestions for cardiovascular pedagogy. Adv Physiol Educ. 2015;39(3):242–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Furst B, O'Leary AM. Is the heart a pressure or flow generator? Possible implications and suggestions for cardiovascular pedagogy. Adv Physiol Educ. 2016;40(2):200.PubMedCrossRefGoogle Scholar
  103. 103.
    Dalmau R, Furst B. Continuing the debate: Branko Furst’s alternative model and the role of the heart. P T. 2017;42(7):443–5.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Branko Furst
    • 1
  1. 1.Professor of AnesthesiologyAlbany Medical CollegeAlbanyUSA

Personalised recommendations