Abstract
Models are used to simplify a group of observable events into readily understandable concepts. Over the years, numerous models of circulation have been developed in an effort to elucidate fundamental hemodynamic principles. They attest to the ingenuity on the part of the investigators but also point to the complexity of the subject at hand. Because the heart is the organ which is thought to provide the total hydraulic energy to the blood, the idea of the heart as a pressure-generating pump is implicit in most commonly used models. Just how much of a role the heart plays in blood propulsion and the relative contribution of the peripheral circulation in the regulation of cardiac output is a matter of ongoing debate. Because of the multitude of factors which contribute to the regulation of cardiac output, the subject will be approached from the two commonly used perspectives: that of the heart and of the peripheral circulation. The left ventricular (LV) view purports that the heart is the sole source of blood propulsion and hence the principal controller of cardiac output. Guyton’s “venous return” (VR) model posits, on the contrary, that the peripheral circulation is the main determinant of cardiac output and the heart plays a secondary role. LV and VR views are reviewed and critiqued for their conceptual and methodological inconsistencies. Trends in the pharmacologic therapy of heart failure and the declining use of intra-aortic balloon pumps speak in favor of the peripheral circulation as the principal determinant of cardiac output.
Keywords
Circulation models Left ventricular model Guyton’s venous return model Cardiac output Weber’s circulation model Peripheral resistance Elastic recoil Mean circulatory pressure Ohm’s law Heart failure therapy Aortic balloon pumpReferences
- 1.Magder S. The classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol. 2006;101(5):1533.PubMedCrossRefPubMedCentralGoogle Scholar
- 2.Magder S. Point: counterpoint: the classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol. 2006;101(5):1523–5.PubMedCrossRefPubMedCentralGoogle Scholar
- 3.Brengelmann G. Counterpoint: the classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is not correct. J Appl Physiol. 2006;101(5):1525–6.PubMedCrossRefPubMedCentralGoogle Scholar
- 4.Brengelmann GL. The classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol. 2006;101(5):1532.PubMedCrossRefPubMedCentralGoogle Scholar
- 5.Pinsky MR. The classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol. 2006;101(5):1528–30.PubMedCrossRefPubMedCentralGoogle Scholar
- 6.Guyton AC, Jones CE, Coleman TG. Circulatory physiology: cardiac output and its regulation. Philadelphia: Saunders WB; 1973. p. 253–62.Google Scholar
- 7.Fuchs T. De motu locali animalium. In: Mechanization of the heart: Harvey and Descartes. Rocherter: University Rochester Press; 2001. p. 62–75.Google Scholar
- 8.Harvey W. On the generation of animals (Translated by R. Willis). In: Hutchins RM, editor. Great Books of the Western World Encycl. Britannica. Chicago: Encyclopedia Britannica; 1952. p. 429–32.Google Scholar
- 9.Siegel RE. Why Galen and Harvey did not compare the heart to a pump. Am J Cardiol. 1967;20(1):117–21.PubMedPubMedCentralCrossRefGoogle Scholar
- 10.Siegel RE. Galen’s system of physiology and medicine. Basel: Karger; 1968. p. 83–102.Google Scholar
- 11.Harvey W. A second disquisition to John Riolan (Translated by R. Willis). In: Hutchins RM, editor. Great Books of the Western World. Chicago: Encyclopedia Britannica; 1952. p. 313–28.Google Scholar
- 12.Harvey W. An anatomical disquisition on the motion of the heart and blood. In: Hutchins RM, editor. Animals in Great Books of the Western World. Chicago: Encyclopedia Britannica; 1952. p. 276–8.Google Scholar
- 13.Aristotle. Physics, Book 8, Ch. 8. In: Barnes J, editor. Complete works of Aristotle, volume 1: the revised Oxford translation. Princeton: Princeton University Press; 1984. p. 437–42.Google Scholar
- 14.Vijaya GK. Celestial dynamics and rotational forces in circular and elliptical motions. 2018. http://www.reciprocalsystem.org/paper/celestial-dynamics-and-rotational-forces-in-circular-and-elliptical-motions; [accessed 08.30.2019].
- 15.Pagel W. The philosophy of Circles–Cesalpino–Harvey: a penultimate assessment. J Hist Med Allied Sci. 1957;12(2):140–57.PubMedCrossRefPubMedCentralGoogle Scholar
- 16.Harvey W. An anatomical disquisition on the motion of the heart and blood in animals (translated by R. Willis). In: Hutchins RM, editor. Great Books of the Western World. Chicago: Encyclopedia Britannica; 1952. p. 285–6.Google Scholar
- 17.Wright T. Circulation: William Harvey’s revolutionary idea. London: Chatto & Windus; 2012. p. 205–9.Google Scholar
- 18.Simms E-M. Goethe, Husserl, and the crisis of the European sciences. Janus Head. 2005;8(1):160–72.Google Scholar
- 19.Fuchs T. The mechanization of the heart: Harvey and Descartes, vol. 1. Rochester: University of Rochester Press; 2001. p. 247.Google Scholar
- 20.Lynch JJ. The vital sign. In: Lynch JJ, editor. The language of the heart: the body’s response to human dialogue. New York: Basic Books (AZ); 1985. p. 29–49.Google Scholar
- 21.Hall TS. Ideas of life and matter: studies in the history of general physiology, 600 BC-1900 AD. Chicago: University of Chicago Press; 1969. p. 241–9.Google Scholar
- 22.Pickering G. Systemic arterial hypertension. In: Fishman AP, Richards DW, editors. Circulation of the blood men and ideas. Bethesda: American Physiological Society; 1982. p. 487–541.Google Scholar
- 23.Husemann F, Wolff O. The anthroposophical approach to medicine. London: Rudolf Steiner Press; 1987. p. 298–414.Google Scholar
- 24.Hales S. Statistical essays: containing haemastaticks no. 22, reprinted. History of medicine series, vol 2, 1964. Library of New York Academy of Medicine. New York: Hafner Publishing, 1733.Google Scholar
- 25.Booth J. A short history of blood pressure measurement. Proc R Soc Med. 1977;70(11):793–9.PubMedPubMedCentralGoogle Scholar
- 26.Nichols WW, O’Rourke MF. McDonald’s blood flow in arteries: theoretic, experimental, and clinical principles. Philadelphia: Lea & Fabiger; 1990. p. 12–53.Google Scholar
- 27.Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010;87:198–210.PubMedPubMedCentralCrossRefGoogle Scholar
- 28.Fishman A. Dynamics of the pulmonary circulation. In: Hamilton WF, Dow P, editors. Handbook of physiology section 2: Circulation, vol. 2. Washington, DC: American Physiological Society; 1963. p. 1667–743.Google Scholar
- 29.Westerhof N, Stergiopulos N, Noble MI. Snapshots of hemodynamics: an aid for clinical research and graduate education. New York: Springer; 2010. p. 233–7.CrossRefGoogle Scholar
- 30.Grodins FS, Stuart WH, Veenstra RL. Performance characteristics of the right heart bypass preparation. Am J Physiol. 1960;198(3):552.PubMedCrossRefPubMedCentralGoogle Scholar
- 31.Herndon C, Sagawa K. Combined effects of aortic and right atrial pressures on aortic flow. Am J Physiol. 1969;217(1):65–72.PubMedCrossRefPubMedCentralGoogle Scholar
- 32.Levy MN. The cardiac and vascular factors that determine systemic blood flow. Circ Res. 1979;44(6):739.PubMedCrossRefPubMedCentralGoogle Scholar
- 33.Calbet J, et al. Effects of ATP-induced leg vasodilation on VO2 peak and leg O2 extraction during maximal exercise in humans. Am J Physiol Regul Integr Comp Physiol. 2006;291(2):R447–53.PubMedCrossRefPubMedCentralGoogle Scholar
- 34.Laughlin MH. Skeletal muscle blood flow capacity: role of muscle pump in exercise hyperemia. Am J Physiol. 1987;253(5):H993–H1004.PubMedPubMedCentralGoogle Scholar
- 35.Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 36.Michard F. Volume management using dynamic parameters. Chest. 2005;128(4):1902–3.PubMedCrossRefPubMedCentralGoogle Scholar
- 37.Coudray A, et al. Fluid responsiveness in spontaneously breathing patients: a review of indexes used in intensive care. Crit Care Med. 2005;33(12):2757.PubMedCrossRefPubMedCentralGoogle Scholar
- 38.Binanay C, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA. 2005;294(13):1625.PubMedCrossRefPubMedCentralGoogle Scholar
- 39.Kumar A, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32(3):691.PubMedCrossRefPubMedCentralGoogle Scholar
- 40.Ma TS, et al. Central venous pressure and pulmonary capillary wedge pressure: fresh clinical perspectives from a new model of discordant and concordant heart failure. Tex Heart Inst J. 2011;38(6):627.PubMedPubMedCentralGoogle Scholar
- 41.Halpern SD, Taichman DB. Misclassification of pulmonary hypertension due to reliance on pulmonary capillary wedge pressure rather than left ventricular end-diastolic pressure. Chest. 2009;136(1):37–43.PubMedCrossRefPubMedCentralGoogle Scholar
- 42.Bernstein WH, et al. The interpretation of pulmonary artery wedge (pulmonary capillary) pressures. Br Heart J. 1960;22(1):37.PubMedPubMedCentralCrossRefGoogle Scholar
- 43.Weed H. Pulmonary “capillary” wedge pressure not the pressure in the pulmonary capillaries. Chest. 1991;100(4):1138–40.PubMedCrossRefPubMedCentralGoogle Scholar
- 44.Samet P, et al. Clinical and physiologic relationships in mitral valve disease. Circulation. 1959;19(4):517–30.PubMedCrossRefPubMedCentralGoogle Scholar
- 45.Cowley AW Jr, Guyton AC. Heart rate as a determinant of cardiac output in dogs with arteriovenous fistula. Am J Cardiol. 1971;28(3):321–5.PubMedCrossRefPubMedCentralGoogle Scholar
- 46.Stein E, et al. The relation of heart rate to cardiovascular dynamics. Pacing by atrial electrodes. Circulation. 1966;33(6):925.PubMedCrossRefPubMedCentralGoogle Scholar
- 47.Ross J Jr, Linhart JW, Braunwald E. Effects of changing heart rate in man by electrical stimulation of the right atrium: studies at rest, during exercise, and with isoproterenol. Circulation. 1965;32(4):549–58.PubMedCrossRefPubMedCentralGoogle Scholar
- 48.Braunwald E, et al. Clinical observations on paired electrical stimulation of the heart:: effects on ventricular performance and heart rate. Am J Med. 1964;37(5):700–11.PubMedCrossRefPubMedCentralGoogle Scholar
- 49.Goldberg LI. Use of sympathomimetic amines in heart failure. Am J Cardiol. 1968;22(2):177–82.PubMedCrossRefPubMedCentralGoogle Scholar
- 50.Elliott WC, Gorlin R. Isoproterenol in treatment of heart disease hemodynamic effects in circulatory failure. JAMA. 1966;197(5):315–20.PubMedCrossRefGoogle Scholar
- 51.Bayram M, et al. Reassessment of dobutamine, dopamine, and milrinone in the management of acute heart failure syndromes. Am J Cardiol. 2005;96(6A):47G.PubMedCrossRefPubMedCentralGoogle Scholar
- 52.Fonarow G. The Acute Decompensated Heart Failure National Registry (ADHERE): opportunities to improve care of patients hospitalized with acute decompensated heart failure. Rev Cardiovasc Med. 2003;4(Suppl 7):S21.PubMedPubMedCentralGoogle Scholar
- 53.Abraham WT, et al. In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the Acute Decompensated Heart Failure National Registry (ADHERE). J Am Coll Cardiol. 2005;46(1):57–64.PubMedCrossRefGoogle Scholar
- 54.Coons JC, McGraw M, Murali S. Pharmacotherapy for acute heart failure syndromes. Am J Health Syst Pharm. 2011;68(1):21–35.PubMedCrossRefGoogle Scholar
- 55.Swedberg K, et al. Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005) The Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology. Eur Heart J. 2005;26(11):1115–40.PubMedCrossRefGoogle Scholar
- 56.Kantrowitz A, et al. Mechanical intraaortic cardiac assistance in cardiogenic shock: hemodynamic effects. Arch Surg. 1968;97(6):1000.PubMedCrossRefGoogle Scholar
- 57.O’Connor CM, Rogers JG. Evidence for overturning the guidelines in cardiogenic shock. N Engl J Med. 2012;367(14):1349–50.PubMedCrossRefPubMedCentralGoogle Scholar
- 58.Thiele H, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367(14):1287–96.PubMedCrossRefPubMedCentralGoogle Scholar
- 59.Sjauw KD, Piek JJ. Is the intra-aortic balloon pump leaking? Lancet. 2013;382(9905):1616–7.PubMedCrossRefPubMedCentralGoogle Scholar
- 60.Su D, et al. Intra-aortic balloon pump may grant no benefit to improve the mortality of patients with acute myocardial infarction in short and long term: an updated meta-analysis. Medicine. 2015;94(19):e876.PubMedPubMedCentralCrossRefGoogle Scholar
- 61.Ambrosy AP, et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol. 2014;63(12):1123–33.PubMedCrossRefGoogle Scholar
- 62.Go AS, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129:e28–e292.PubMedCrossRefGoogle Scholar
- 63.Roger VL. Epidemiology of heart failure. Circ Res. 2013;113(6):646–59.PubMedPubMedCentralCrossRefGoogle Scholar
- 64.Packer M. Unbelievable folly of clinical trials in heart failure. Circ Heart Fail. 2016;9(4):e002837.PubMedCrossRefGoogle Scholar
- 65.Schulze U. Herzinsuffizienztherapie in der modernen Kardiologie - is die Pumpenvorstellung des herzens zutreffend? Der Merkurstab. 2006;59(6):480–7.Google Scholar
- 66.Alexander W. Branko Furst’s radical alternative: is the heart moved by the blood, rather than vice versa? P T. 2017;42(1):33–9.PubMedPubMedCentralGoogle Scholar
- 67.Furst B. The heart: pressure-propulsion pump or organ of impedance? J Cardiothorac Vasc Anesth. 2015;29(6):1688–701.PubMedCrossRefGoogle Scholar
- 68.Parker KH. A brief history of arterial wave mechanics. Med Biol Eng Comput. 2009;47(2):111–8.PubMedPubMedCentralCrossRefGoogle Scholar
- 69.Weber EH. Ueber die Anwendung der Wellenlehre auf die Lehre vom Kreislaufe des Blutes und insbesondere auf die Pulslehre. Leipzig: Berichte ueber die Verhandlungen, Koenigl. Saechsische Gesellschaft der Wissenschaften; 1850. p. 164–204.Google Scholar
- 70.Jacobsohn E, Chorn R, O’Connor M. The role of the vasculature in regulating venous return and cardiac output: historical and graphical approach. Can J Anesth. 1997;44(8):849–67.PubMedCrossRefPubMedCentralGoogle Scholar
- 71.Starling EH. The Arris and Gale lectures on some points in the pathology of heart disease, Lecture II. Lancet. 1897;149(3836):652–5.CrossRefGoogle Scholar
- 72.Bayliss W, Starling EH. Observations on venous pressures and their relationship to capillary pressures. J Physiol. 1894;16(3–4):159.PubMedPubMedCentralCrossRefGoogle Scholar
- 73.Starling EH. The Linacre lecture on the law of the heart. London: Longmans, Green & Co; 1918.Google Scholar
- 74.Starr I, Rawson A. Role of “static blood pressure” in abnormal increments of venous pressure, especially in hear failure. I. Theoretical studies on an improved circulation schema whose pumps obey Starling’s law of the heart. Am J Med Sci. 1940;199:27–39.CrossRefGoogle Scholar
- 75.Starr I. Role of “static blood pressure” in abnormal increments of venous pressure, especially in heart failure. II. Clinical and experimental studies. Am J Med Sci. 1940;199:40–55.CrossRefGoogle Scholar
- 76.Patterson S, Starling E. On the mechanical factors which determine the output of the ventricles. J Physiol. 1914;48(5):357.PubMedPubMedCentralCrossRefGoogle Scholar
- 77.Guyton AC, Jones CE, Coleman TG. Circulatory physiology: cardiac output and its regulation. Philadelphia: Saunders; 1973. p. 238.Google Scholar
- 78.Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 1955;35(1):123–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 79.Guyton AC, et al. Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol. 1957;189(3):609.PubMedCrossRefPubMedCentralGoogle Scholar
- 80.Guyton AC, Lindsey AW, Kaufmann BN. Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output. Am J Physiol. 1955;180(3):463–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 81.Guyton AC, Polizo D, Armstrong GG. Mean circulatory filling pressure measured immediately after cessation of heart pumping. Am J Physiol. 1954;179(2):261–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 82.Brengelmann GL. A critical analysis of the view that right atrial pressure determines venous return. J Appl Physiol. 2003;94(3):849.PubMedCrossRefPubMedCentralGoogle Scholar
- 83.Guyton AC. The relationship of cardiac output and arterial pressure control. Circulation. 1981;64(6):1079–88.PubMedCrossRefPubMedCentralGoogle Scholar
- 84.Caldini P, et al. Effect of epinephrine on pressure, flow, and volume relationships in the systemic circulation of dogs. Circ Res. 1974;34(5):606–23.CrossRefGoogle Scholar
- 85.Sylvester J, Goldberg H, Permutt S. The role of the vasculature in the regulation of cardiac output. Clin Chest Med. 1983;4(2):111.PubMedPubMedCentralGoogle Scholar
- 86.Permutt S, Caldini P. Regulation of cardiac output by the circuit: venous return. In: Baan J, Noordegraff A, Raines J, editors. Cardiovasuclar system dynamics. Cambrige: MIT Press; 1987. p. 465–79.Google Scholar
- 87.Tyberg JV. How changes in venous capacitance modulate cardiac output. Pflügers Archiv. 2002;445(1):10–7.PubMedCrossRefPubMedCentralGoogle Scholar
- 88.Magder S, De Varennes B. Clinical death and the measurement of stressed vascular volume. Crit Care Med. 1998;26(6):1061–4.PubMedCrossRefPubMedCentralGoogle Scholar
- 89.Maas JJ, et al. Assessment of venous return curve and mean systemic filling pressure in postoperative cardiac surgery patients. Crit Care Med. 2009;37(3):912.PubMedCrossRefPubMedCentralGoogle Scholar
- 90.Pinsky MR. Instantaneous venous return curves in an intact canine preparation. J Appl Physiol. 1984;56(3):765–71.PubMedCrossRefGoogle Scholar
- 91.Versprille A, et al. Mean systemic filling pressure as a characteristic pressure for venous return. Pfluegers Arch. 1985;405(3):226–33.CrossRefGoogle Scholar
- 92.Hiesmayr M, Jansen JRC, Versprille A. Effects of endotoxin infusion on mean systemic filling pressure and flow resistance to venous return. Pfluegers Arch. 1996;431(5):741–7.CrossRefGoogle Scholar
- 93.Schipke J, et al. Static filling pressure in patients during induced ventricular fibrillation. Am J Physiol Heart Circ Physiol. 2003;285(6):H2510.PubMedCrossRefGoogle Scholar
- 94.Berger DC, et al. Effect of PEEP, blood volume, and inspiratory hold maneuvers on venous return. Am J Physiol Heart Circ Physiol. 2016;311(3):H794–806. https://doi.org/10.1152/ajpheart.00931.2015.CrossRefPubMedGoogle Scholar
- 95.Henderson WR, et al. Clinical review: Guyton-the role of mean circulatory filling pressure and right atrial pressure in controlling cardiac output. Crit Care. 2010;14(6):243.PubMedPubMedCentralCrossRefGoogle Scholar
- 96.Guyton AC. Editor’s note, A. Guytons comment on Levy’s article: The cardiac and vascular factors that determine systemic blood flow. Circ Res. 1979;44(6):746–7.Google Scholar
- 97.Reddi B, Carpenter R. Venous excess: a new approach to cardiovascular control and its teaching. J Appl Physiol. 2005;98(1):356.PubMedCrossRefPubMedCentralGoogle Scholar
- 98.Brengelmann G. Steady-state venous return: residue in a recent model analysis of the notion that it is driven by elastic recoil of the venous system. J Appl Physiol. 2009;107(1):369.PubMedCrossRefGoogle Scholar
- 99.Brengelmann GL. Learning opportunities in the study of Curran-Everett’s exploration of a classic paper on venous return. Adv Physiol Educ. 2008;32(3):242–3.PubMedCrossRefGoogle Scholar
- 100.Beard DA, Feigl EO. Understanding Guyton’s venous return curves. Am J Physiol Heart Circ Physiol. 2011;301(3):H629–33.PubMedPubMedCentralCrossRefGoogle Scholar
- 101.Mitchell JR. Is the heart a pressure or flow generator? Possible implications and suggestions for cardiovascular pedagogy. Adv Physiol Educ. 2015;39(3):242–7.PubMedCrossRefGoogle Scholar
- 102.Furst B, O'Leary AM. Is the heart a pressure or flow generator? Possible implications and suggestions for cardiovascular pedagogy. Adv Physiol Educ. 2016;40(2):200.PubMedCrossRefGoogle Scholar
- 103.Dalmau R, Furst B. Continuing the debate: Branko Furst’s alternative model and the role of the heart. P T. 2017;42(7):443–5.Google Scholar