Advertisement

A Brief Comparative Phylogeny

  • Branko Furst
Chapter

Abstract

There are two basic types of circulation. The open circulatory system of invertebrates is characterized by a system of body cavities or coeloms connected with vascular conduits, both of which lack the endothelial lining. This simple arrangement allows the circulating fluid, the hemolymph, to bathe the inner organs directly, thus fulfilling the dual function of tissue fluid and blood. Functionally, it resembles the early embryonic circulation of vertebrates before the formation of a continuous vascular endothelium. In contrast, the closed circulatory system of the vertebrates is phylogenetically younger and consists of a network of continuous vessels in which the blood does not come in direct contact with the surrounding tissues. An overlap exists at the level of local circulations and individual organs within the vertebrate and invertebrate species.

In primitive vertebrates, such as the lancelet, the circulating fluid moves without a heart as the central organ of circulation. In fishes’ single-circuit system, the gills and the heart are placed in series. The two-chambered heart is in the venous limb, downstream from the gut and liver, and supplies the gills with pressures that exceed those in the arteries. Largely devoid of gravity, fish depend on water for respiration, fluid balance, thermoregulation, reproduction, and fin development. The amphibians are adapted to life in water only during early stages of their development. Transition to land is marked by loss of fins and gills, and the emergence of tail and limbs. Adaptation to air respiration introduces a fundamental change in the structure of the cardiovascular system. The heart and the lung are joined by a newly formed pulmonary circulation placed in parallel with the systemic circulation. In contrast to fish, the circulatory loops cross and assume the shape of a lemniscate. The heart acquires a new chamber, the left atrium, while a common ventricle is shared between the pulmonary and systemic loops. Amphibians continue to depend for temperature, reproduction, and part of their respiratory needs on water (skin respiration). Through the development of sophisticated organ systems such as thermoregulation, respiration, excretion, inner reproduction, and locomotion, mammals have attained a high degree of environmental emancipation. The cardiovascular system consists of two anatomically separate, but functionally unified, parts—the systemic and pulmonary circulations—placed in series. In addition to an independent inner watery environment, mammals have developed an “inner atmosphere,” reflected primarily in the partial pressure of oxygen and nitrogen in the blood that parallels the atmospheric pressure. The essential new feature of the mammalian circulation is a pressurized arterial compartment. The similarity of arterial pressure across the mammalian species suggests that the pressure as such does not serve the blood propulsion.

Keywords

Circulation in invertebrates Circulation in vertebrates Amphibian circulation Circulation in insects Circulation in lancelet Fish circulation Bird circulation Cross-current gas exchange Lymph circulation Open circulation Closed circulation In series circulation In parallel circulation 

References

  1. 1.
    Hama K. The fine structure of some blood vessels of the earthworm, Eisenia foetida. J Biophys Biochem Cytol. 1960;7(4):717.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Johnston JB. On the blood vessels, their valves and the course of the blood in Lumbricus. Biol Bull. 1903;5(2):74.CrossRefGoogle Scholar
  3. 3.
    Johnston JB, Johnson SW. The course of the blood flow in Lumbricus. Am Nat. 1902;36(424):317–28.CrossRefGoogle Scholar
  4. 4.
    Fourtner CR, Pax RA. The contractile blood vessels of the earthworm, Lumbricus terrestris. Comp Biochem Physiol A Physiol. 1972;42(3):627–38.CrossRefGoogle Scholar
  5. 5.
    Johansen K, Martin AW. Circulation in a giant earthworm, Glossoscolex giganteus. J Exp Biol. 1965;43(2):333.Google Scholar
  6. 6.
    Martin AW, Johansen K. Adaptation of the circulation in invertebrate animals. In: Handbook of Physiology; American Physiological Society, Washington D.C., 1965, vol. 3, p.2545–2581.Google Scholar
  7. 7.
    Barnes R. Invertebrate zoology, vol. 509. Philadelphia: Saunders College; 1980.Google Scholar
  8. 8.
    Potts W. Excretion in the molluscs. Biol Rev. 1967;42(1):1–41.CrossRefGoogle Scholar
  9. 9.
    Johansen K, Martin AW. Circulation in the cephalopod, Octopus dofleini. Comp Biochem Physiol. 1962;5(3):161–4. IN1–5, 165–76.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Chapman G. The hydrostatic skeleton in the invertebrates. Biol Rev. 1958;33(3):338–71.CrossRefGoogle Scholar
  11. 11.
    Nutting WL. A comparative anatomical study of the heart and accessory structures of the orthopteroid insects. J Morphol. 1951;89(3):501–97.CrossRefGoogle Scholar
  12. 12.
    Miller T. Control of circulation in insects. Gen Pharmacol Vasc S. 1997;29(1):23–38.CrossRefGoogle Scholar
  13. 13.
    Hertel W, Pass G. An evolutionary treatment of the morphology and physiology of circulatory organs in insects. Comp Biochem Physiol A Mol Integr Physiol. 2002;133(3):555–75.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Slama K. Active regulation of insect respiration. Ann Entomol Soc Am. 1999;92(6):916–29.CrossRefGoogle Scholar
  15. 15.
    Davis R, Fraenkel G. The oxygen consumption of flies during flight. J Exp Biol. 1940;17(4):402.Google Scholar
  16. 16.
    Ekblom B, et al. Effect of training on circulatory response to exercise. J Appl Physiol. 1968;24(4):518.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Tartes U, Vanatoa A, Kuusik A. The insect abdomen—a heartbeat manager in insects? Comp Biochem Physiol A. 2002;133(3):611–23.CrossRefGoogle Scholar
  18. 18.
    Schad W. Aus der vergleichenden Anatomie des Herzens. Der Merkurstab. 2006;59(2):104–11.Google Scholar
  19. 19.
    Heron A. Advantages of heart reversal in pelagic tunicates. J Mar Biol Assoc U K. 1975;55:959–63.CrossRefGoogle Scholar
  20. 20.
    Westheide W, et al. Special zoology. Pt. 1: Protozoa and invertebrate animals. Stuttgart: Gustav Fischer; 1996.Google Scholar
  21. 21.
    Rähr H. The ultrastructure of the blood vessels of Branchiostoma lanceolatum (Pallas)(Cephalochordata). Zoomorphology. 1981;97(1):53–74.CrossRefGoogle Scholar
  22. 22.
    Moller PC, Philpott CW. The circulatory system of amphioxus (Branchiostoma floridae) I. Morphology of the major vessels of the pharyngeal area. J Morphol. 1973;139(4):389–406.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Hong YK, Shin JW, Detmar M. Development of the lymphatic vascular system: a mystery unravels. Dev Dyn. 2004;231(3):462–73.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Pepper MS, Skobe M. Lymphatic endothelium. J Cell Biol. 2003;163(2):209.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ribatti D, et al. Chorioallantoic membrane capillary bed: a useful target for studying angiogenesis and anti angiogenesis in vivo. Anat Rec. 2001;264(4):317–24.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Jeltsch M, et al. Genesis and pathogenesis of lymphatic vessels. Cell Tissue Res. 2003;314(1):69–84.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell. 1999;98(6):769–78.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Wilting J, Papoutsi M, Becker J. The lymphatic vascular system: secondary or primary? Lymphology. 2004;37(3):98–106.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Huntington G. The phylogenetic relations of the lymphatic and blood vascular systems in vertebrates. Anat Rec. 1910;4(1):1–14.CrossRefGoogle Scholar
  30. 30.
    Lenfant C, Johansen K. Gas exchange in gill, skin, and lung breathing. Respir Physiol. 1972;14(1–2):211–8.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Olson KR. Gill circulation: regulation of perfusion distribution and metabolism of regulatory molecules. J Exp Zool. 2002;293(3):320–35.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Breisch EA, et al. Ultrastructural morphometry of the myocardium of Thunnus alalunga. Cell Tissue Res. 1983;233(2):427–38.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    West JB. Comparative physiology of the pulmonary blood-gas barrier: the unique avian solution. Am J Physiol Regul Integr Comp Physiol. 2009;297(6):R1625–34.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Sandblom E, et al. Cardiac preload and venous return in swimming sea bass (Dicentrarchus labrax L.). J Exp Biol. 2005;208(10):1927–35.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Sedmera D, et al. Developmental patterning of the myocardium. Anat Rec. 2000;258(4):319–37.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Smith MP, et al. Effects of hypoxia on isolated vessels and perfused gills of rainbow trout. Comp Biochem Physiol A Mol Integr Physiol. 2001;130(1):171–81.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Moudgil R, Michelakis ED, Archer SL. Hypoxic pulmonary vasoconstriction. J Appl Physiol. 2005;98(1):390–403.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Rohen JW. The dynamic wholeness of the human organism. In: Functional morphology. Hillsdale: Adonis Press; 2007. p.165–200.Google Scholar
  39. 39.
    Maina JN. Development, structure, and function of a novel respiratory organ, the lung air-sac system of birds: to go where no other vertebrate has gone. Biol Rev. 2006;81(4):545–79.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Scott GR. Elevated performance: the unique physiology of birds that fly at high altitudes. J Exp Biol. 2011;214(15):2455–62.CrossRefGoogle Scholar
  41. 41.
    Faraci FM. Adaptations to hypoxia in birds: how to fly high. Annu Rev Physiol. 1991;53(1):59–70.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Grubb BR. Allometric relations of cardiovascular function in birds. Am J Physiol Heart Circ Physiol. 1983;245(4):H567–72.CrossRefGoogle Scholar
  43. 43.
    Peters GW, et al. Cardiorespiratory adjustments of homing pigeons to steady wind tunnel flight. J Exp Biol. 2005;208(16):3109–20.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Calbet J, et al. Maximal muscular vascular conductances during whole body upright exercise in humans. J Physiol. 2004;558(1):319–31.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Stansfield WE, et al. Characterization of a model to independently study regression of ventricular hypertrophy. J Surg Res. 2007;142(2):387–93.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Liesche C. Patterns in the evolution of the heart and ciruclatory system. In: Holdrege C, editor. The dynamic heart and circulation; Fair Oaks,CA: AWSNA, 2002; p. 99–114.Google Scholar
  47. 47.
    Mitchell G, Skinner JD. An allometric analysis of the giraffe cardiovascular system. Comp Biochem Physiol A Mol Integr Physiol. 2009;154(4):523–9.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Branko Furst
    • 1
  1. 1.Professor of AnesthesiologyAlbany Medical CollegeAlbanyUSA

Personalised recommendations