Early Embryo Circulation

  • Branko Furst


Over the past several decades, the search for the unifying paradigm between the form and function of the early vertebrate embryo heart has focused on genetic patterns as the blueprints for early heart formation, enhanced by phylogenetic and morphologic observations. More recently, however, there has been a resurgence of interest in epigenetic factors such as intracardiac flow patterns and fluid forces as significant factors in early embryo cardiogenesis and vascular formation. The availability of new techniques such as confocal microscopy, phase contrast magnetic resonant imaging, digital particle velocimetry, and high-frequency ultrasonographic imaging, used for in vivo observation of embryonic flow dynamics, have provided new insights into the early embryo hemodynamics. The existing evidence no longer supports the accepted mode of heart’s peristaltic blood propulsion and has called for a radical re-evaluation of the traditionally accepted model of circulation.


Cardiogenesis Cardiovascular lineage Heart progenitors Heart looping Cardiac jelly Septation Sinus venosus Cardiac tube 


  1. 1.
    Fishman MC, Chien KR. Fashioning the vertebrate heart: earliest embryonic decisions. Development. 1997;124(11):2099–117.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Warren KS, et al. The genetic basis of cardiac function: dissection by zebrafish (Danio rerio) screens. Philos Trans R Soc Lond B Biol Sci. 2000;355(1399):939–44.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Fishman MC, Olson EN. Parsing the heart: genetic minireview modules for organ assembly. Cell. 1997;91:153–6.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Männer J. Ontogenetic development of the helical heart: concepts and facts. Eur J Cardiothorac Surg. 2006;29:S69–74.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Grosberg A, Gharib M. Physiology in phylogeny: modeling of mechanical driving forces in cardiac development. Heart Fail Clin. 2008;4(3):247–59.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Sedmera D, et al. Developmental patterning of the myocardium. Anat Rec. 2000;258(4):319–37.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Sedmera D. Function and form in the developing cardiovascular system. Cardiovasc Res. 2011;91(2):252–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Hove JR, et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature. 2003;421(6919):172–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Lucitti JL, et al. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development. 2007;134(18):3317–26.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Buschmann I, et al. Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis. Development. 2010;137(13):2187–96.PubMedCrossRefGoogle Scholar
  11. 11.
    le Noble F, et al. Control of arterial branching morphogenesis in embryogenesis: go with the flow. Cardiovasc Res. 2005;65(3):619–28.PubMedCrossRefGoogle Scholar
  12. 12.
    le Noble F, et al. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development. 2004;131(2):361–75.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Hove JAYR. Quantifying cardiovascular flow dynamics during early development. Pediatr Res. 2006;60(1):6–13.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Forouhar AS, et al. The embryonic vertebrate heart tube is a dynamic suction pump. Science. 2006;312(5774):751–3.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Männer J, Wessel A, Yelbuz TM. How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube. Dev Dyn. 2010;239(4):1035–46.PubMedCrossRefGoogle Scholar
  16. 16.
    McQuinn TC, et al. High frequency ultrasonographic imaging of avian cardiovascular development. Dev Dyn. 2007;236(12):3503–13.PubMedCrossRefGoogle Scholar
  17. 17.
    Hu N, Clark E. Hemodynamics of the stage 12 to stage 29 chick embryo. Circ Res. 1989;65(6):1665–70.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    MacLennan MJ, Keller BB. Umbilical arterial blood flow in the mouse embryo during development and following acutely increased heart rate. Ultrasound Med Biol. 1999;25(3):361–70.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Steiner R. Lecture 3; May 24, 1920. In: The redemption of thinking. Spring Valley: Anthroposophic Press; 1983.Google Scholar
  20. 20.
    Steiner R. Lecture 5; April 17, 1920. In: Man: hieroglyph of the universe. London: Rudolf Steiner Press; 1972.Google Scholar
  21. 21.
    Rohen JW. Functional morphology: the dynamic wholeness of the human organism. Hillsdale: Adonis Press; 2007.Google Scholar
  22. 22.
    Schad W. Aus der vergleichende Anatomie des Herzens. Der Merkurstab. 2006;59(2):104–11.Google Scholar
  23. 23.
    Woernle M. The embryonic development of the cardiovascular system. In: Holdrege C, editor. The dynamic heart and circulation; 2002. p. 115–43.Google Scholar
  24. 24.
    Manteuffel-Szoege L. Energy sources of blood circulation and the mechanical action of the heart. Thorax. 1960;15(1):47.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Manteuffel-Szoege L. Ueber die Bewegung des Blutes. Stuttgart: Verlag Freies Geistesleben, GmbH Stuttgart; 1977.Google Scholar
  26. 26.
    Ferkowicz MJ, Yoder MC. Blood island formation: longstanding observations and modern interpretations. Exp Hematol. 2005;33(9):1041–7.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Ferguson J, Kelley RW, Patterson C. Mechanisms of endothelial differentiation in embryonic vasculogenesis. Arterioscler Thromb Vasc Biol. 2005;25(11):2246–54.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Zaffran S, Frasch M. Early signals in cardiac development. Circ Res. 2002;91(6):457–69.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Jin SW, Patterson C. The opening act. Arterioscler Thromb Vasc Biol. 2009;29(5):623–9.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Moretti A, et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell. 2006;127(6):1151–65.PubMedCrossRefGoogle Scholar
  31. 31.
    Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell. 2006;11(5):723–32.PubMedCrossRefGoogle Scholar
  32. 32.
    Qyang Y, et al. The renewal and differentiation of isl1+ cardiovascular progenitors are controlled by a wnt/[beta]-catenin pathway. Cell Stem Cell. 2007;1(2):165–79.PubMedCrossRefGoogle Scholar
  33. 33.
    Manner J. The anatomy of cardiac looping: a step towards the understanding of the morphogenesis of several forms of congenital cardiac malformations. Clin Anat. 2009;22(1):21–35.PubMedCrossRefGoogle Scholar
  34. 34.
    Patten BM, Kramer TC. The initiation of contraction in the embryonic chick heart. Am J Anat. 1933;53(3):349–75.CrossRefGoogle Scholar
  35. 35.
    Sedmera D, et al. Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat Rec. 1999;254(2):238–52.PubMedCrossRefGoogle Scholar
  36. 36.
    Männer J, et al. High resolution in vivo imaging of the cross sectional deformations of contracting embryonic heart loops using optical coherence tomography. Dev Dyn. 2008;237(4):953–61.PubMedCrossRefGoogle Scholar
  37. 37.
    Männer J, et al. In vivo imaging of the cyclic changes in cross sectional shape of the ventricular segment of pulsating embryonic chick hearts at stages 14 to 17: a contribution to the understanding of the ontogenesis of cardiac pumping function. Dev Dyn. 2009;238(12):3273–84.PubMedCrossRefGoogle Scholar
  38. 38.
    Carlson BM. Patten’s foundations of embryology. New York: McGraw-Hill; 1988.Google Scholar
  39. 39.
    Peshkovsky C, Totong R, Yelon D. Dependence of cardiac trabeculation on neuregulin signaling and blood flow in zebrafish. Dev Dyn. 2011;240(2):446–56.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Auman HJ, et al. Functional modulation of cardiac form through regionally confined cell shape changes. PLoS Biol. 2007;5(3):e53.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Trinh LA, Stainier DYR. Fibronectin regulates epithelial organization during myocardial migration in zebrafish. Dev Cell. 2004;6(3):371–82.PubMedCrossRefGoogle Scholar
  42. 42.
    Burggren WW. What is the purpose of the embryonic heart beat? Or how facts can ultimately prevail over physiological dogma. Physiol Biochem Zool. 2004;77(3):333–45.PubMedCrossRefGoogle Scholar
  43. 43.
    Hu N, et al. Effect of atrial natriuretic peptide on diastolic filling in the stage 21 chick embryo. Pediatr Res. 1995;37(4):465–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Branko Furst
    • 1
  1. 1.Professor of AnesthesiologyAlbany Medical CollegeAlbanyUSA

Personalised recommendations