Skip to main content

Extension of Some Edge Graph Problems: Standard and Parameterized Complexity

  • Conference paper
  • First Online:
Book cover Fundamentals of Computation Theory (FCT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11651))

Included in the following conference series:

Abstract

We consider extension variants of some edge optimization problems in graphs containing the classical Edge Cover, Matching, and Edge Dominating Set problems. Given a graph \(G=(V,E)\) and an edge set \(U \subseteq E\), it is asked whether there exists an inclusion-wise minimal (resp., maximal) feasible solution \(E'\) which satisfies a given property, for instance, being an edge dominating set (resp., a matching) and containing the forced edge set U (resp., avoiding any edges from the forbidden edge set \(E\setminus U\)). We present hardness results for these problems, for restricted instances such as bipartite or planar graphs. We counter-balance these negative results with parameterized complexity results. We also consider the price of extension, a natural optimization problem variant of extension problems, leading to some approximation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Addressing the problem to decide whether there is a truth assignment setting exactly one literal in each clause to true.

References

  1. Bazgan, C., Brankovic, L., Casel, K., Fernau, H.: On the complexity landscape of the domination chain. In: Govindarajan, S., Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 61–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29221-2_6

    Chapter  Google Scholar 

  2. Bazgan, C., et al.: The many facets of upper domination. Theor. Comput. Sci. 717, 2–25 (2018)

    Article  MathSciNet  Google Scholar 

  3. Berger, A., Fukunaga, T., Nagamochi, H., Parekh, O.: Approximability of the capacitated b-edge dominating set problem. Theor. Comput. Sci. 385(1–3), 202–213 (2007)

    Article  MathSciNet  Google Scholar 

  4. Berger, A., Parekh, O.: Linear time algorithms for generalized edge dominating set problems. Algorithmica 50(2), 244–254 (2008)

    Article  MathSciNet  Google Scholar 

  5. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness of short symmetric instances of MAX-3SAT. ECCC (049) (2003)

    Google Scholar 

  6. Bertossi, A.A.: Dominating sets for split and bipartite graphs. Inf. Process. Lett. 19(1), 37–40 (1984)

    Article  MathSciNet  Google Scholar 

  7. Biró, M., Hujter, M., Tuza, Z.: Precoloring extension. I. Interval graphs. Disc. Math. 100(1–3), 267–279 (1992)

    Article  MathSciNet  Google Scholar 

  8. Bonamy, M., Defrain, O., Heinrich, M., Raymond, J.-F.: Enumerating minimal dominating sets in triangle-free graphs. In: Niedermeier, R., Paul, C. (eds.) STACS, Dagstuhl, Germany. Leibniz International Proceedings in Informatics (LIPIcs), vol. 126, pp. 16:1–16:12. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

    Google Scholar 

  9. Boros, E., Gurvich, V., Hammer, P.L.: Dual subimplicants of positive Boolean functions. Optim. Meth. Softw. 10(2), 147–156 (1998)

    Article  MathSciNet  Google Scholar 

  10. Cardinal, J., Levy, E.: Connected vertex covers in dense graphs. Theor. Comput. Sci. 411(26–28), 2581–2590 (2010)

    Article  MathSciNet  Google Scholar 

  11. Casel, K., Fernau, H., Khosravian Ghadikoei, M., Monnot, J., Sikora, F.: On the complexity of solution extension of optimization problems. CoRR, abs/1810.04553 (2018)

    Google Scholar 

  12. Casel, K., Fernau, H., Ghadikoalei, M.K., Monnot, J., Sikora, F.: Extension of vertex cover and independent set in some classes of graphs. In: Heggernes, P. (ed.) CIAC 2019. LNCS, vol. 11485, pp. 124–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17402-6_11

    Chapter  Google Scholar 

  13. Colbourn, C.J.: The complexity of completing partial Latin squares. Disc. Appl. Math. 8(1), 25–30 (1984)

    Article  MathSciNet  Google Scholar 

  14. Dudycz, S., Lewandowski, M., Marcinkowski, J.: Tight approximation ratio for minimum maximal matching. In: Lodi, A., Nagarajan, V. (eds.) IPCO 2019. LNCS, vol. 11480, pp. 181–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17953-3_14

    Chapter  Google Scholar 

  15. Escoffier, B., Monnot, J., Paschos, V.T., Xiao, M.: New results on polynomial inapproximabilityand fixed parameter approximability of edge dominating set. Theory Comput. Syst. 56(2), 330–346 (2015)

    Article  MathSciNet  Google Scholar 

  16. Fernau, H.: edge dominating set: efficient enumeration-based exact algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 142–153. Springer, Heidelberg (2006). https://doi.org/10.1007/11847250_13

    Chapter  MATH  Google Scholar 

  17. Fernau, H., Hoffmann, S.: Extensions to minimal synchronizing words. J. Autom. Lang. Comb. 24 (2019)

    Google Scholar 

  18. Fernau, H., Manlove, D.F., Monnot, J.: Algorithmic study of upper edge dominating set (2019, manuscript)

    Google Scholar 

  19. Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. In: Johnson, D.S., et al. (eds.) STOC, pp. 448–456. ACM (1983)

    Google Scholar 

  20. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co. (1979)

    Google Scholar 

  21. Golovach, P.A., Heggernes, P., Kratsch, D., Vilnger, Y.: An incremental polynomial time algorithm to enumerate all minimal edge dominating sets. Algorithmica 72(3), 836–859 (2015)

    Article  MathSciNet  Google Scholar 

  22. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: On the neighbourhood helly of some graph classes and applications to the enumeration of minimal dominating sets. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 289–298. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35261-4_32

    Chapter  MATH  Google Scholar 

  23. Kratochvíl, J.: A special planar satisfiability problem and a consequence of its NP-completeness. Discrete Appl. Math. 52, 233–252 (1994)

    Article  MathSciNet  Google Scholar 

  24. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal independent sets: NP-hardness and polynomial-time algorithms. SIAM J. Comput. 9, 558–565 (1980)

    Article  MathSciNet  Google Scholar 

  25. McRae, A.A.: Generalizing NP-completeness proofs for bipartite and chordal graphs. Ph.D. thesis, Clemson University, Department of Computer Science, South Carolina (1994)

    Google Scholar 

  26. van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for edge domination. Algorithmica 64(4), 535–563 (2012)

    Article  MathSciNet  Google Scholar 

  27. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  28. Trevisan, L.: Non-approximability results for optimization problems on bounded degree instances. In: Vitter, J.S., Spirakis, P.G., Yannakakis, M. (eds.) STOC, pp. 453–461. ACM (2001)

    Google Scholar 

  29. Uno, T.: Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite graphs. In: Leong, H.W., Imai, H., Jain, S. (eds.) ISAAC 1997. LNCS, vol. 1350, pp. 92–101. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63890-3_11

    Chapter  MATH  Google Scholar 

  30. Wang, J., Chen, B., Feng, Q., Chen, J.: An efficient fixed-parameter enumeration algorithm for weighted edge dominating set. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 237–250. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_25

    Chapter  Google Scholar 

  31. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3), 364–372 (1980)

    Article  MathSciNet  Google Scholar 

  32. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput. 3(1), 103–128 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Sikora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Casel, K., Fernau, H., Khosravian Ghadikolaei, M., Monnot, J., Sikora, F. (2019). Extension of Some Edge Graph Problems: Standard and Parameterized Complexity. In: Gąsieniec, L., Jansson, J., Levcopoulos, C. (eds) Fundamentals of Computation Theory. FCT 2019. Lecture Notes in Computer Science(), vol 11651. Springer, Cham. https://doi.org/10.1007/978-3-030-25027-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25027-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25026-3

  • Online ISBN: 978-3-030-25027-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics