Advertisement

β-Amylase: General Properties, Mechanism and Panorama of Applications by Immobilization on Nano-Structures

  • Ranjana Das
  • Arvind M. Kayastha
Chapter

Abstract

The present chapter describes the enzyme β-amylase in detail so as to get a better understanding of its structure, function, reaction mechanism and potential utility in industry. Main function of the enzyme in plant is starch degradation. The enzyme hydrolyzes α,1-4 glycosidic linkages in starch and related polysaccharide and is distributed among plants, microorganism and fungi. β-Amylases require a minimum chain length of four glycosyl residues. Therefore, the final products of the degradation of linear glucan chains are maltose (4-O-α-D-glucopyranosyl-β-D-glucose) and a small amount of maltotriose, which is too short to be hydrolyzed by β-amylases. Degradation of branched polymers yield maltose and isomaltose as the enzyme cannot bypass α,1-6 linkages. Structure determination by X-ray crystallography of sweet potato and soybean β-amylases efficiently described the amino acid residues involved in catalysis. Detailed classifications of plant β-amylases have been discussed in this chapter which reveals that β-amylases are the major enzyme of starch degradation pathway. The enzyme finds application in industry as the end product maltose is indispensable as sweetener in food and pharmaceuticals because of its mild sweetness and lack of color formation. β-Amylases also delay starch retrogradation, thus maintaining the quality of bread and preventing it from staling. In addition, applications and future prospects of industrially important β-amylase enzyme, immobilized on various matrices with potential for biotechnological applications are discussed in detail.

Keywords

β-Amylases Immobilized enzymes Catalytic applications Hydrolysis 

References

  1. Ann YG, Iizuka M, Yamamoto T, Minamiura N (1990) Preparation and some properties of active monomer of sweet potato β-amylase. Agric Biol Chem 54(3):769–774Google Scholar
  2. Bailey J, French D (1957) The significance of multiple reactions in enzyme-polymer systems. J Biol Chem 226(1):001–014Google Scholar
  3. Barbosa O, Torres R, Ortiz C, Berenguer-Murcia Á, Rodrigues RC, Fernandez-Lafuente R (2013) Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules 14(8):2433–2462CrossRefGoogle Scholar
  4. Bernfeld P (1955) Amylases, alpha and beta. Methods Enzymol 1:149–158CrossRefGoogle Scholar
  5. Bryjak J (2003) Glucoamylase, α-amylase and β-amylase immobilisation on acrylic carriers. Biochem Eng J 16(3):347–355CrossRefGoogle Scholar
  6. Caldwell KD, Axén R, Bergwall M, Olsson I, Porath J (1976a) Immobilization of enzymes based on hydrophobic interaction. III. Adsorbent substituent density and its impact on the immobilization of β-amylase. Biotechnol Bioeng 18(11):1605–1614PubMedCrossRefPubMedCentralGoogle Scholar
  7. Caldwell KD, Axén R, Wall MB, Porath J (1976b) Immobilization of enzymes based on hydrophobic interaction. I. Preparation and properties of a β-amylase adsorbate. Biotechnol Bioeng 18(11):1573–1588PubMedCrossRefPubMedCentralGoogle Scholar
  8. Chang C, Liou HY, Tang HL, Sung HY (1996) Activation, purification and properties of beta-amylase from sweet potatoes (Ipomoea batatas). Biotechnol Appl Biochem 24:13–18Google Scholar
  9. Chatterjee B, Ghosh A, Das A (1992) Starch digestion and adsorption by β-amylase of Emericella nidulans (Aspergillus nidulans). J Appl Microbiol 72(3):208–213Google Scholar
  10. Cheong CG, Eom SH, Chang C, Shin DH, Song HK, Min K, Moon JH, Kim KK, Hwang KY, Suh SW (1995) Crystallization, molecular replacement solution, and refinement of tetrameric β-amylase from sweet potato. Proteins: Struct Funct Bioinf 21(2):105–117CrossRefGoogle Scholar
  11. Cleveland F, Kerr R (1948) The action of beta-amylase on corn amylose. Cereal Chem 25(2):133–139Google Scholar
  12. Cudney R, McPherson A (1993) Preliminary crystallographic analysis of sweet potato beta amylase. J Mol Biol 229(1):253–254PubMedCrossRefPubMedCentralGoogle Scholar
  13. Das R, Kayastha AM (2018) An antioxidant rich novel β-amylase from peanuts (Arachis hypogaea): its purification, biochemical characterization and potential applications. Int J Biol Macromol 111:148–157PubMedCrossRefPubMedCentralGoogle Scholar
  14. Das R, Kayastha AM (2019) Enzymatic hydrolysis of native granular starches by a new β-amylase from peanut (Arachis hypogaea). Food Chem 276:582–590CrossRefGoogle Scholar
  15. Das R, Mishra H, Srivastava A, Kayastha AM (2017) Covalent immobilization of β-amylase onto functionalized molybdenum sulfide nanosheets, its kinetics and stability studies: a gateway to boost enzyme application. Chem Eng J 328:215–227CrossRefGoogle Scholar
  16. Das R, Talat M, Srivastava ON, Kayastha AM (2018a) Covalent immobilization of peanut β-amylase for producing industrial nano-biocatalysts: a comparative study of kinetics, stability and reusability of the immobilized enzyme. Food Chem 245:488–499PubMedCrossRefPubMedCentralGoogle Scholar
  17. Das R, Ranjan R, Sinha N, Kayastha AM (2018b) Comparative characterization of peanut β-amylase immobilization onto graphene oxide and graphene oxide carbon nanotubes by solid-state NMR. J Phys Chem 122:19259–19265Google Scholar
  18. Deleyn F, Stouffs R (1990) Immobilised β-amylase in the production of maltose syrups. Starch – Stärke 42(4):158–160CrossRefGoogle Scholar
  19. Demirkan ES, Mikami B, Adachi M, Higasa T, Utsumi S (2005) α-Amylase from B. amyloliquefaciens: purification, characterization, raw starch degradation and expression in E. coli. Process Biochem 40(8):2629–2636CrossRefGoogle Scholar
  20. Dicko MH, Searle-van Leeuwen M, Beldman G, Ouedraogo O, Hilhorst R, Traore A (1999) Purification and characterization of β-amylase from Curculigo pilosa. Appl Microbiol Biotechnol 52(6):802–805CrossRefGoogle Scholar
  21. Doehlert DC, Duke SH, Anderson L (1982) Beta-amylases from alfalfa (Medicago sativa L.) roots. Plant Physiol 69(5):1096–1102PubMedPubMedCentralCrossRefGoogle Scholar
  22. French D (1961) Action pattern of β-amylase. Nature 190(4774):445–446PubMedCrossRefPubMedCentralGoogle Scholar
  23. French D, Youngquist R (1963) The mode of action of β-amylase on starch oligosaccharides. Starch-Stärk 15(12):425–431CrossRefGoogle Scholar
  24. French D, Levine ML, Pazur J, Norberg E (1950) Studies on the schardinger dextrins. IV. The action of soy bean beta amylase on amyloheptaose. J Am Chem Soc 72(4):1746–1748CrossRefGoogle Scholar
  25. Fulton DC, Stettler M, Mettler T, Vaughan CK, Li J, Francisco P, Gil M, Reinhold H, Eicke S, Messerli G (2008) β-Amylase, a noncatalytic protein required for starch breakdown, acts upstream of three active β-amylases in Arabidopsis chloroplasts. Plant Cell 20(4):1040–1058PubMedPubMedCentralCrossRefGoogle Scholar
  26. Genghof DS, Brewer CF, Hehre EJ (1978) Preparation and use of α-maltosyl fluoride as a substrate by beta amylase. Carbohydr Res 61(1):291–299CrossRefGoogle Scholar
  27. Germain P, Crichton RR (1988) Characterization of a chemically modified β-amylase immobilized on porous silica. J Chem Technol Biotechnol 41(4):297–315CrossRefGoogle Scholar
  28. He L, Park SH, Dang NDH, Duong HX, Duong TPC, Tran PL, Park JT, Ni L, Park KH (2017) Characterization and thermal inactivation kinetics of highly thermostable ramie leaf β-amylase. Enzym Microb Technol 101:17–23CrossRefGoogle Scholar
  29. Hehre EJ, Okada G, Genghof DS (1969) Configurational specificity: unappreciated key to understanding enzymic reversions and de novo glycosidic bond synthesis: I. reversal of hydrolysis by α-, β-and glucoamylases with donors of correct anomeric form. Arch Biochem Biophys 135:75–89CrossRefGoogle Scholar
  30. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280(2):309–316PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hildebrand D, Hymowitz T (1981) Role of β-amylase in starch metabolism during soybean seed development and germination. Physiol Plant 53(4):429–434CrossRefGoogle Scholar
  32. Hopkins R, Jelinek B, Harrison L (1948) The action of β-amylase on potato amylose. Biochem J 43(1):32–38PubMedPubMedCentralCrossRefGoogle Scholar
  33. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier C, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35(2):W585–W587PubMedPubMedCentralCrossRefGoogle Scholar
  34. Husain Q (2017) Nanomaterials as novel support for the immobilization of amylolytic enzymes and their applications: a review. Biocatalysis (DeGruyter) 3(1):37–53Google Scholar
  35. Husemann VE, Pfannemüller B (1961) About the different behavior of synthetic and natural amylose versus phosphorylase and β-amylase. Macromol Chem Phys 43:156–159CrossRefGoogle Scholar
  36. Ishikawa K, Nakatani H, Katsuya Y, Fukazawa C (2007) Kinetic and structural analysis of enzyme sliding on a substrate: multiple attack in β-amylase. Biochemistry 46(3):792–798PubMedCrossRefPubMedCentralGoogle Scholar
  37. Kamasaka H, Sugimoto K, Takata H, Nishimura T, Kuriki T (2002) Bacillus stearothermophilus neopullulanase selective hydrolysis of amylose to maltose in the presence of amylopectin. Appl Environ Microbiol 68(4):1658–1664PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kang YN, Adachi M, Utsumi S, Mikami B (2004) The roles of Glu186 and Glu380 in the catalytic reaction of soybean β-amylase. J Mol Biol 339(5):1129–1140PubMedCrossRefPubMedCentralGoogle Scholar
  39. Kaplan F, Guy CL (2005) RNA interference of Arabidopsis beta-amylase prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. Plant J 44(5):730–743PubMedCrossRefPubMedCentralGoogle Scholar
  40. Khan MJ, Khan FH, Husain Q (2011) Application of immobilized Ipomoea batata β amylase in the saccharification of starch. J Appl Biol Sci 5(2):33–39Google Scholar
  41. Kitahata S, Chiba S, Brewer CF, Hehre EJ (1991) Mechanism of maltal hydration catalyzed by beta-amylase: role of protein structure in controlling the steric outcome of reactions catalyzed by a glycosylase. Biochemistry 30(27):6769–6775PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kokufuta E, Sodeyama T, Katano T (1986) Initiation–cessation control of an enzyme reaction using pH-sensitive poly(styrene) microcapsules with a surface-coating of poly(iminoethylene). J Chem Soc Chem Commun 1(9):641–642CrossRefGoogle Scholar
  43. Kötting O, Pusch K, Tiessen A, Geigenberger P, Steup M, Ritte G (2005) Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphoglucan, water dikinase. Plant Physiol 137(1):242–252PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kuhn R (1924) About the constitution of the starch and the different modes of action of the amylases. Berichte der Deutschen Chemischen Gesellschaft (A and B Series) 57(10):1965–1968CrossRefGoogle Scholar
  45. Laby RJ, Kim D, Gibson SI (2001) The ram1 mutant of Arabidopsis exhibits severely decreased β-amylase activity. Plant Physiol 127(4):1798–1807PubMedPubMedCentralCrossRefGoogle Scholar
  46. Lahmar I, Radeva G, Marinkova D, Velitchkova M, Belghith H, Ben Abdallah F, Yotova L, Belghith K (2018) Immobilization and topochemical mechanism of a new β-amylase extracted from Pergularia tomentosa. Process Biochem 64:143–151CrossRefGoogle Scholar
  47. Lao NT, Schoneveld O, Mould RM, Hibberd JM, Gray JC, Kavanagh TA (1999) An Arabidopsis gene encoding a chloroplast-targeted β-amylase. Plant J 20(5):519–527PubMedCrossRefPubMedCentralGoogle Scholar
  48. Li X, Yu HY (2011) Extracellular production of beta-amylase by a halophilic isolate, Halobacillus sp. LY9. J Ind Microbiol Biotechnol 38(11):1837–1843PubMedCrossRefPubMedCentralGoogle Scholar
  49. Lloyd JR, Kossmann J, Ritte G (2005) Leaf starch degradation comes out of the shadows. Trends Plant Sci 10(3):130–137PubMedCrossRefPubMedCentralGoogle Scholar
  50. Mihajlovski KR, Radovanović NR, Veljović ĐN, Šiler-Marinković SS, Dimitrijević-Branković SI (2016) Improved β-amylase production on molasses and sugar beet pulp by a novel strain Paenibacillus chitinolyticus CKS1. Ind Crop Prod 80:115–122CrossRefGoogle Scholar
  51. Mikami B, Hehre EJ, Sato M, Katsube Y, Hirose M, Morita Y, Sacchettini JC (1993) The 2.0-ANG resolution structure of soybean beta-amylase complexed with alpha-cyclodextrin. Biochemistry 32(27):6836–6845PubMedCrossRefPubMedCentralGoogle Scholar
  52. Mikami B, Degano M, Hehre EJ, Sacchettini JC (1994) Crystal structures of soybean beta-amylase reacted with beta-maltose and maltal: active site components and their apparent roles in catalysis. Biochemistry 33(25):7779–7787PubMedCrossRefPubMedCentralGoogle Scholar
  53. Mikami B, Yoon HJ, Yoshigi N (1999a) The crystal structure of the sevenfold mutant of barley β-amylase with increased thermostability at 2.5 Å resolution. J Mol Biol 285(3):1235–1243PubMedCrossRefPubMedCentralGoogle Scholar
  54. Mikami B, Adachi M, Kage T, Sarikaya E, Nanmori T, Shinke R, Utsumi S (1999b) Structure of raw starch-digesting Bacillus cereus β-amylase complexed with maltose. Biochemistry 38(22):7050–7061PubMedCrossRefPubMedCentralGoogle Scholar
  55. Miyake H, Otsuka C, Nishimura S, Nitta Y (2002) Catalytic mechanism of β-amylase from Bacillus cereus var. mycoides: chemical rescue of hydrolytic activity for a catalytic site mutant (Glu367 → Ala) by azide. J Biochem 131(4):587–591PubMedCrossRefPubMedCentralGoogle Scholar
  56. Nakayama S, Amagase S (1963) An improved method for the purification of sweet potato β-amylase. J Biochem 54(4):375–377PubMedCrossRefPubMedCentralGoogle Scholar
  57. Nehete PN, Shah NK, Ramamurthy V, Kothari RM (1992) An optimized protocol for the production of high purity maltose. World J Microbiol Biotechnol 8(4):446–450PubMedCrossRefPubMedCentralGoogle Scholar
  58. Niittylä T, Messerli G, Trevisan M, Chen J, Smith AM, Zeeman SC (2004) A previously unknown maltose transporter essential for starch degradation in leaves. Science 303(5654):87–89PubMedCrossRefPubMedCentralGoogle Scholar
  59. Ohlsson E (1930) Über die beiden komponenten der malzdiastase, besonders mit rücksicht auf die mutarotation der bei der hydrolyse der stärke gebildeten produkte. Hoppe-Seyler´ s Zeitschrift für Physiologische Chemie 189(1-2):17–63CrossRefGoogle Scholar
  60. Oyama T, Kusunoki M, Kishimoto Y, Takasaki Y, Nitta Y (1999) Crystal structure of β-amylase from Bacillus cereus var. mycoides at 2.2 Å resolution. J Biochem 125(6):1120–1130PubMedCrossRefPubMedCentralGoogle Scholar
  61. Oyama T, Miyake H, Kusunoki M, Nitta Y (2003) Crystal structures of β-amylase from Bacillus cereus var. mycoides in complexes with substrate analogs and affinity-labeling reagents. J Biochem 133(4):467–474PubMedCrossRefPubMedCentralGoogle Scholar
  62. Pierleoni A, Martelli PL, Fariselli P, Casadio R (2006) BaCelLo: a balanced subcellular localization predictor. Bioinformatics 22(14):e408–e416CrossRefGoogle Scholar
  63. Pujadas G, Ramírez FM, Valero R, Palau J (1996) Evolution of β-amylase: patterns of variation and conservation in subfamily sequences in relation to parsimony mechanisms. Proteins: Struct Funct Bioinf 25(4):456–472CrossRefGoogle Scholar
  64. Rani RR, Jana SC, Nanda G (1994) Saccharification of indigenous starches by β-amylase of Bacillus megaterium. World J Microbiol Biotechnol 10(6):691–693PubMedCrossRefPubMedCentralGoogle Scholar
  65. Rasouli N, Sohrabi N, Zamani E (2016) Influence of a novel magnetic recoverable support on kinetic, stability and activity of beta-amylase enzyme. Phys Chem Res 4(2):271–283Google Scholar
  66. Ray RR (2004) β-Amylases from various fungal strains. Acta Microbiol Immunol Hung 51(1-2):85–95PubMedCrossRefPubMedCentralGoogle Scholar
  67. Ray RR, Chakraverty R (1998) Extracellular β-amylase from Syncephalastrum racemosum. Mycol Res 102(12):1563–1567CrossRefGoogle Scholar
  68. Ray RR, Nanda G (1996) Microbial β-amylases: biosynthesis, characteristics, and industrial applications. Crit Rev Microbiol 22(3):181–199PubMedCrossRefPubMedCentralGoogle Scholar
  69. Reinhold H, Soyk S, Šimkovà K, , Hostettler C, Marafino J, Mainiero S, Vaughan CK, Monroe JD, Zeeman CS (2011). β-Amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. Plant Cell 23: 1391–1403PubMedPubMedCentralCrossRefGoogle Scholar
  70. Rexova L, Kopec Z, Kiel B (1967) Isolation and certain properties of wheat β-amylase. Collect Czech Chem C 32(2):678–684CrossRefGoogle Scholar
  71. Ritte G, Lorberth R, Steup M (2000) Reversible binding of the starch-related R1 protein to the surface of transitory starch granules. Plant J 21(4):387–391PubMedCrossRefPubMedCentralGoogle Scholar
  72. Sadowski J, Rorat T, Cooke R, Delseny M (1993) Nucleotide sequence of a cDNA clone encoding ubiquitous beta-amylase in rye (Secale cereale L.). Plant Physiol 102(1):315PubMedPubMedCentralCrossRefGoogle Scholar
  73. Sagu ST, Nso EJ, Homann T, Kapseu C, Rawel HM (2015) Extraction and purification of beta-amylase from stems of Abrus precatorius by three phase partitioning. Food Chem 183:144–153PubMedCrossRefPubMedCentralGoogle Scholar
  74. Scheidig A, Fröhlich A, Schulze S, Lloyd JR, Kossmann J (2002) Downregulation of a chloroplast-targeted β-amylase leads to a starch-excess phenotype in leaves. Plant J 30(5):581–591PubMedCrossRefPubMedCentralGoogle Scholar
  75. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409(6817):258–268PubMedCrossRefPubMedCentralGoogle Scholar
  76. Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths-biocatalysis in industrial synthesis. Science 299(5613):1694–1697PubMedCrossRefPubMedCentralGoogle Scholar
  77. Servaites JC, Geiger DR (2002) Kinetic characteristics of chloroplast glucose transport. J Exp Bot 53(374):1581–1591PubMedCrossRefPubMedCentralGoogle Scholar
  78. Singh K, Kayastha AM (2014) Optimal immobilization of α-amylase from wheat (Triticum aestivum) onto DEAE-cellulose using response surface methodology and its characterization. J Mol Catal B Enzym 104:75–81CrossRefGoogle Scholar
  79. Singh N, Srivastava G, Talat M, Raghubanshi H, Srivastava ON, Kayastha AM (2014) Cicer α-galactosidase immobilization onto functionalized graphene nanosheets using response surface method and its applications. Food Chem 142:430–438PubMedCrossRefPubMedCentralGoogle Scholar
  80. Smith SM, Fulton DC, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman SC, Smith AM (2004) Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and post-transcriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol 136(1):2687–2699PubMedPubMedCentralCrossRefGoogle Scholar
  81. Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56:73–98PubMedCrossRefPubMedCentralGoogle Scholar
  82. Sottirattanapan P, Nantachai K, Daduang S, Funahashi T, Yamada M (2017) Purification and characterization of amylase from roots of Paederia foetida Linn. Biocatal Agric Biotechnol 10:329–335CrossRefGoogle Scholar
  83. Sparla F, Costa A, Schiavo FL, Pupillo P, Trost P (2006) Redox regulation of a novel plastid-targeted β-amylase of Arabidopsis. Plant Physiol 141(3):840–850PubMedPubMedCentralCrossRefGoogle Scholar
  84. Srivastava G, Kayastha AM (2014) β-Amylase from starchless seeds of Trigonella foenum-graecum and its localization in germinating seeds. PLoS One 9(2):e88697PubMedPubMedCentralCrossRefGoogle Scholar
  85. Srivastava G, Singh K, Talat M, Srivastava ON, Kayastha AM (2014) Functionalized graphene sheets as immobilization matrix for fenugreek β-amylase: enzyme kinetics and stability studies. PLoS One 9(11):e113408PubMedPubMedCentralCrossRefGoogle Scholar
  86. Srivastava G, Roy S, Kayastha AM (2015) Immobilisation of fenugreek β-amylase on chitosan/PVP blend and chitosan coated PVC beads: a comparative study. Food Chem 172:844–851PubMedCrossRefPubMedCentralGoogle Scholar
  87. Sun Z, Henson CA (1991) A quantitative assessment of the importance of barley seed α-amylase, β-amylase, debranching enzyme, and α-glucosidase in starch degradation. Arch Biochem Biophys 284(2):298–305PubMedCrossRefPubMedCentralGoogle Scholar
  88. Swanson MA (1948) Studies on the structure of polysaccharides IV. Relation of the iodine color to the structure. J Biol Chem 172(2):825–837PubMedPubMedCentralGoogle Scholar
  89. Takeda Y, Hizukuri S (1969) Improved method for crystallization of sweet potato beta-amylase. Biochim Biophys Acta 185(2):469–471PubMedCrossRefPubMedCentralGoogle Scholar
  90. Tanaka N, Kajimoto S, Mitani D, Kunugi S (2002) Effects of guanidine hydrochloride and high pressure on subsite flexibility of β-amylase. Biochim Biophys Acta Protein Struct Mol Enzymol 1596(2):318–325CrossRefGoogle Scholar
  91. Teotia S, Khare S, Gupta M (2001) An efficient purification process for sweet potato beta-amylase by affinity precipitation with alginate. Enzym Microb Technol 28(9-10):792–795CrossRefGoogle Scholar
  92. Thoma JA, Brothers C, Spradlin JE (1970) Subsite mapping of enzymes. Studies on Bacillus subtilis amylase. Biochemistry 9(8):1768–1775PubMedCrossRefPubMedCentralGoogle Scholar
  93. Thoma JA, Spradlin JE, Dygert S (1971) 6 plant and animal amylases. In: The enzymes, vol 5. Elsevier, New York, pp 115–189Google Scholar
  94. Tkachuk R, Tipples K (1966) Wheat beta-amylases. II. Characterization. Cereal Chem 43:62–79Google Scholar
  95. Torres-Salas P, del Monte-Martinez A, Cutiño-Avila B, Rodriguez-Colinas B, Alcalde M, Ballesteros AO, Plou FJ (2011) Immobilized biocatalysts: novel approaches and tools for binding enzymes to supports. Adv Mater 23(44):5275–5282PubMedCrossRefPubMedCentralGoogle Scholar
  96. Totsuka A, Fukazawa C (1996) Functional analysis of Glu380 and Leu383 of soybean β-amylase: a proposed action mechanism. Eur J Biochem 240(3):655–659PubMedCrossRefPubMedCentralGoogle Scholar
  97. Uozumi N, Matsuda T, Tsukagoshi N, Udaka S (1991) Structural and functional roles of cysteine residues of Bacillus polymyxa beta-amylase. Biochemistry 30(18):4594–4599PubMedCrossRefPubMedCentralGoogle Scholar
  98. Van Damme EJ, Hu J, Barre A, Hause B, Baggerman G, Rouge P, Peumans WJ (2001) Purification, characterization, immunolocalization and structural analysis of the abundant cytoplasmic β-amylase from Calystegia sepium (hedge bindweed) rhizomes. FEBS J 268(23):6263–6273Google Scholar
  99. Viera FB, Barragan BB, Busto BL (1988) Reversible immobilization of soybean β-amylase on phenylboronate–agarose. Biotechnol Bioeng 31(7):711–713PubMedCrossRefPubMedCentralGoogle Scholar
  100. Viksø-Nielsen A, Christensen TM, Bojko M, Marcussen J (1997) Purification and characterization of β-amylase from leaves of potato (Solanum tuberosum). Physiol Plant 99(1):190–196CrossRefGoogle Scholar
  101. Wang Q, Monroe J, Sjolund RD (1995) Identification and characterization of a phloem-specific β-amylase. Plant Physiol 109(3):743–750PubMedPubMedCentralCrossRefGoogle Scholar
  102. Williamson G, Belshaw NJ, Self DJ, Noel TR, Ring SG, Cairns P, Morris VJ, Clark SA, Parker ML (1992) Hydrolysis of A-and B-type crystalline polymorphs of starch by α-amylase, β-amylase and glucoamylase. Carbohydr Polym 18(3):179–187CrossRefGoogle Scholar
  103. Yamaguchi T, Matsumoto Y, Shirakawa M, Kibe M, Hibino T, Kozaki S, Takasaki Y, Nitta Y (1996) Cloning, sequencing, and expression of a β-amylase gene from Bacillus cereus var. mycoides and characterization of its products. Biosci Biotechnol Biochem 60(8):1255–1259PubMedCrossRefPubMedCentralGoogle Scholar
  104. Yoshida N, Nakamura K (1991) Molecular cloning and expression in Escherichia coli of cDNA encoding the subunit of sweet potato β-amylase. J Biochem 110(2):196–201PubMedCrossRefPubMedCentralGoogle Scholar
  105. Yoshida M, Oishi K, Kimura T, Ogata M, Nakakuki T (1989) Continuous production of maltose using a dual immobilized enzyme system. Agric Biol Chem 53(12):3139–3142Google Scholar
  106. Yoshigi N, Okada Y, Sahara H, Koshino S (1994) Expression in Escherichia coli of cDNA encoding barley β-amylase and properties of recombinant β-amylase. Biosci Biotechnol Biochem 58(6):1080–1086PubMedCrossRefPubMedCentralGoogle Scholar
  107. Youngquist RW (1962) Beta-amylase action on high molecular weight maltosaccharides. Retrospective Theses and Dissertations 2033Google Scholar
  108. Zeeman SC, Northrop F, Smith AM, Rees TA (1998) A starch-accumulating mutant of Arabidopsis thaliana deficient in a chloroplastic starch-hydrolysing enzyme. Plant J 15(3):357–365PubMedCrossRefPubMedCentralGoogle Scholar
  109. Zeeman SC, Smith SM, Smith AM (2004) The breakdown of starch in leaves. New Phytol 163(2):247–261CrossRefGoogle Scholar
  110. Zeeman SC, Smith SM, Smith AM (2007) The diurnal metabolism of leaf starch. Biochem J 401:13–28PubMedCrossRefPubMedCentralGoogle Scholar
  111. Ziegler P (1999) Cereal beta-amylases. J Cereal Sci 29(3):195–204CrossRefGoogle Scholar
  112. Ziegler P, Beck E (1986) Exoamylase activity in vacuoles isolated from pea and wheat leaf protoplasts. Plant Physiol 82(4):1119–1121PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ranjana Das
    • 1
  • Arvind M. Kayastha
    • 1
  1. 1.School of Biotechnology, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations