Near-Gathering of Energy-Constrained Mobile Agents

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11639)


We study the task of gathering k energy-constrained mobile agents in an undirected edge-weighted graph. Each agent is initially placed on an arbitrary node and has a limited amount of energy, which constrains the distance it can move. Since this may render gathering at a single point impossible, we study three variants of near-gathering:

The goal is to move the agents into a configuration that minimizes either (i) the radius of a ball containing all agents, (ii) the maximum distance between any two agents, or (iii) the average distance between the agents. We prove that (i) is polynomial-time solvable, (ii) has a polynomial-time 2-approximation with a matching NP-hardness lower bound, while (iii) admits a polynomial-time \(2(1-\tfrac{1}{k})\)-approximation, but no FPTAS, unless \(\text {P}=\text {NP}\). We extend some of our results to additive approximation.


Mobile agents Power-aware robots Limited battery Gathering Graph algorithms Approximation Computational complexity 


  1. 1.
    Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer, Boston (2003)zbMATHGoogle Scholar
  2. 2.
    Anaya, J., Chalopin, J., Czyzowicz, J., Labourel, A., Pelc, A., Vaxès, Y.: Convergecast and broadcast by power-aware mobile agents. Algorithmica 74(1), 117–155 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Awerbuch, B., Betke, M., Rivest, R.L., Singh, M.: Piecemeal graph exploration by a mobile robot. Inf. Comput. 152(2), 155–172 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bampas, E., Das, S., Dereniowski, D., Karousatou, C.: Collaborative delivery by energy-sharing low-power mobile robots. In: ALGOSENSORS 2017, pp. 1–12 (2017)Google Scholar
  5. 5.
    Bärtschi, A., et al.: Collaborative delivery with energy-constrained mobile robots. In: SIROCCO 2016, pp. 258–274 (2016)CrossRefGoogle Scholar
  6. 6.
    Bärtschi, A., et al.: Collaborative delivery with energy-constrained mobile robots. In: Theoretical Computer Science, SIROCCO 2016 (2017)Google Scholar
  7. 7.
    Betke, M., Rivest, R.L., Singh, M.: Piecemeal learning of an unknown environment. Mach. Learn. 18(2), 231–254 (1995)Google Scholar
  8. 8.
    Bilò, D., Disser, Y., Gualà, L., Mihalák, M., Proietti, G., Widmayer, P.: Polygon-constrained motion planning problems. In: ALGOSENSORS 2013, pp. 67–82 (2013)Google Scholar
  9. 9.
    Chalopin, J., Das, S., Mihalák, M., Penna, P., Widmayer, P.: Data delivery by energy-constrained mobile agents. In: ALGOSENSORS 2013, pp. 111–122 (2013)Google Scholar
  10. 10.
    Chalopin, J., Jacob, R., Mihalák, M., Widmayer, P.: Data delivery by energy-constrained mobile agents on a line. In: ICALP 2014, pp. 423–434 (2014)CrossRefGoogle Scholar
  11. 11.
    Cicerone, S., Stefano, G.D., Navarra, A.: Gathering of robots on meeting-points: feasibility and optimal resolution algorithms. Distrib. Comput. 31(1), 1–50 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34, 1516–1528 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Communication problems for mobile agents exchanging energy. In: SIROCCO 2016 (2016)zbMATHCrossRefGoogle Scholar
  15. 15.
    Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. ACM Trans. Algorithms 8(4), 37:1–37:14 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration by energy-constrained mobile robots. In: SIROCCO 2015, pp. 357–369 (2015)Google Scholar
  17. 17.
    Demaine, E.D., Hajiaghayi, M., Mahini, H., Sayedi-Roshkhar, A.S., Oveisgharan, S., Zadimoghaddam, M.: Minimizing movement. ACM Trans. Algorithms 5(3), 30:1–30:30 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Demaine, E.D., Hajiaghayi, M., Marx, D.: Minimizing movement: fixed-parameter tractability. ACM Trans. Algorithms 11(2), 14:1–14:29 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Dereniowski, D., Disser, Y., Kosowski, A., Pająk, D., Uznański, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. ACM Trans. Algorithms 2(3), 380–402 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree exploration. In: ARCS 2006, pp. 341–351 (2006)CrossRefGoogle Scholar
  22. 22.
    Dynia, M., Łopuszański, J., Schindelhauer, C.: Why robots need maps. In: SIROCCO 2007, pp. 41–50 (2007)Google Scholar
  23. 23.
    Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile Entities, Current Research in Moving and Computing. Lecture Notes in Computer Science, vol. 11340. Springer, Switzerland (2019).
  24. 24.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theoret. Comput. Sci. 337(1–3), 147–168 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem (parts 1 and 2). SIAM J. Control Optim. 46(6), 2096–2147 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Pagli, L., Prencipe, G., Viglietta, G.: Getting close without touching: near-gathering for autonomous mobile robots. Distrib. Comput. 28(5), 333–349 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks 59(3), 331–347 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Laboratoire de Recherche en InformatiqueUniversité Paris-SudOrsay CedexFrance
  3. 3.CNRSAix-Marseille Université and Université de Toulon, LISToulonFrance
  4. 4.Department of MathematicsTU DarmstadtDarmstadtGermany
  5. 5.Department of Data Science and Knowledge EngineeringMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations