Skip to main content

Emerging Technologies in Dairy Processing: Present Status and Future Potential

  • Chapter
  • First Online:
Health and Safety Aspects of Food Processing Technologies

Abstract

Milk and Milk products are consumed by people across all ages and countries. Being highly nutritious, dairy products are known to be susceptible to microbial and enzymatic spoilage and thus mandate improved processing methods. In recent years, the development of various non-thermal technologies like high pressure processing (HPP), pulsed electric field, ultra-sonication, membrane filtration and cold plasma, have demonstrated the potential to produce shelf stable dairy products with retained nutritional parameters. On one hand where growing awareness about the effect of nutrition and bioactive compounds on human health has paved the way for emergence of state-of-art methods of food fortification, on the other, the liability of sustaining the ever-increasing and dispersing population resulted in innovations in food processing technologies; together which supported motto of ‘healthy food for all’. Specifically, focusing on impacts on safety, quality and nutritional value, the chapter discusses the principle, scope, merits and limitations of emerging technologies with respect to dairy products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adulkar TV, Rathod VK (2014) Ultrasound assisted enzymatic pre-treatment of high fat content dairy wastewater. Ultrason Sonochem 21:1083–1089

    CAS  PubMed  Google Scholar 

  • Alpas H, Bozoglu F (2002) Inactivation of staphylococcus aureus and listeria monocytogenes in milk and cream of chicken soup by high hydrostatic pressure and bacteriocins. High Pressure Res 22(3-4):681–684. https://doi.org/10.1080/08957950212440

    Article  Google Scholar 

  • Amaral GV, Silva EK, Cavalcanti RN, Cappato LP, Guimaraes JT, Alvarenga VO, Esmerino EA, Portela JB, Sant’ Ana AS, Freitas MQ, Silva MC, Raices RSL, Meireles MAA, Cruz AG (2017) Dairy processing using supercritical carbon dioxide technology: theoretical fundamentals, quality, and safety aspects. Trends Food Sci Technol 64:94–101

    CAS  Google Scholar 

  • Barba FJ, Esteve MJ, Frígola A (2012) High-pressure treatment effect on physicochemical and nutritional properties of fluid foods during storage: a review. Compre Rev Food Sci Food Safe 11:307–322

    CAS  Google Scholar 

  • Barba FJ, Koubaa M, Prado-Silva L, Orlien V, Sant’Ana A (2017) Mild processing applied to the inactivation of the main foodborne bacterial pathogens: a review. Trends Food Sci Technol 66:20–35

    CAS  Google Scholar 

  • Benedito J, Carcel J, Clemente G, Mulet A (2000) Cheese maturity assessment using ultrasonics. J Dairy Sci 83(2):248–254

    CAS  PubMed  Google Scholar 

  • Bermúdez-Aguirre D, Corradini MG, Mawson R, Barbosa-Cánovas GV (2009) Modeling the inactivation of Listeria innocua in raw whole milk treated under thermo-sonication. Innov Food Sci Emerg Technol 10(2):172–178

    Google Scholar 

  • Bermudez-Aguirre D, Dunne CP, Barbosa-Canovas GV (2012) Effect of processing parameters on inactivation of Bacillus cereus spores in milk using pulsed electric fields. Int Dairy J 24:13e21

    Google Scholar 

  • Bourke P, Ziuzina D, Han L, Cullen PJ, Gilmore BF (2017) Microbiological interactions with cold plasma. J Appl Microbiol 123(2):308–324

    CAS  PubMed  Google Scholar 

  • Buckow R, Chandry PS, Ng SY, McAuley CM, Swanson BG (2014) Opportunities and challenges in pulsed electric field processing of dairy products. Int Dairy J 34(2):199–212

    CAS  Google Scholar 

  • Cameron M, McMaster LD, Britz TJ (2008) Electron microscopic analysis of dairy microbes inactivated by ultrasound. Ultrason Sonochem 15:960–964

    CAS  PubMed  Google Scholar 

  • Carlez A, Rasec JP, Richard N, Cheftel JC (1994) Bacterial growth during chilled storage of pressure treated minced meat. Lebensm Wiss Technol 27:48–54

    Google Scholar 

  • Caron A, St-Gelais D, Pouliot Y (1997) Coagulation of milk enriched with ultrafiltered or diafiltered microfiltered milk retentate powders. Int Dairy J 7(6-7):445–451

    CAS  Google Scholar 

  • Chawla R, Patil G, Singh A (2011) High hydrostatic pressure technology in dairy processing: a review. J Food Sci Technol 48(3):260–268. https://doi.org/10.1007/s13197-010-0180-4

    Article  PubMed  Google Scholar 

  • Coutinho NM, Silveira MR, Rocha RS, Moraes J, Ferreira MVS, Pimentel TC, Borges FO (2018) Cold plasma processing of milk and dairy products. Trends Food Sci Technol 74:56–68

    CAS  Google Scholar 

  • Craven HM, Swiergon P, Ng S, Midgely J, Versteeg C, Coventry MJ et al (2008) Evaluation of pulsed electric field and minimal heat treatments for inactivation of pseudomonads and enhancement of milk shelf-life. Innov Food Sci Emerg Technol 9:211e216

    Google Scholar 

  • Ekezie F-GC, Sun D-W, Cheng J-H (2017) A review 516 on recent advances in cold plasma technology for the food industry: current applications and future trends. Trends Food Sci Technol 69(Part A):46–58

    Google Scholar 

  • European Milk Forum (2017) Milk facts nutritional info. Nutrient richness. http://www.milknutritiousbynature.eu/milk-facts/nutritional-info/. Accessed 19 July 2017

  • Gould GW (2000) Preservation: past, present and future. Br Med Bull 56:84–96

    CAS  PubMed  Google Scholar 

  • Gould GW, Sale AJH (1970) Initiation of germination of bacterial spores by hydrostatic pressure. J Gen Microbiol 60:335–346

    CAS  PubMed  Google Scholar 

  • Govindasamy-Lucey S, Jaeggi JJ, Johnson ME, Wang T, Lucey JA (2007) Use of cold microfiltration retentates produced with polymeric membranes for standardization of milks for manufacture of pizza cheese. J Dairy Sci 90(10):4552–4568

    CAS  PubMed  Google Scholar 

  • Greiter M, Novalin S, Wendland M, Kulbe KD, Fischer J (2002) Desalination of whey by electrodialysis and ion exchange resins: analysis of both processes with regard to sustainability by calculating their cumulative energy demand. J Membr Sci 210(1):91–102

    CAS  Google Scholar 

  • Guerrero-Beltran JA, Sepulveda DR, Maria M, Gongora-Nieto MM, Swanson B, Barbosa-Canovas GV (2010) Milk thermization by pulsed electric fields and electrically induced heat. J Food Engg 100:56–60

    Google Scholar 

  • Gurol C, Ekinci FY, Aslan N, Korachi M (2012) Low temperature plasma for decontamination of E. coli in milk. Int J Food Microbiol 157(1):1–5

    CAS  PubMed  Google Scholar 

  • Hess JM, Jonnalagadda SS, Slavin JL (2016) Dairy foods: current evidence of their effects on bone, cardiometabolic, cognitive, and digestive health. Compr Rev Food Sci Food Safe 15:251–268

    Google Scholar 

  • Huppertz T, Fox PF, de Kruif KG, Kelly AL (2006) High pressure-induced changes in bovine milk proteins: a review. Biochim Biophys Acta 1764(3):593–598. https://doi.org/10.1016/j.bbapap.2005.11.010

    Article  CAS  PubMed  Google Scholar 

  • IDFA (2016) Bulletin of the international dairy federation 485/2016. 1–6

    Google Scholar 

  • Jaeger H, Meneses N, Moritz J, Knorr D (2010) Model for the differentiation of temperature and electric field effects during thermal assisted PEF processing. J Food Eng 100:109e118

    Google Scholar 

  • Jankowska A, Wiśniewska K, Reps A (2005) Application of Probiotic Bacteria in production of yoghurt preserved under high pressure. High Pressure Res 25(1):57–62. https://doi.org/10.1080/08957950500062023

    Article  Google Scholar 

  • Jeyamkondan S, Jayas DS, Holley RA (1999) Pulsed electric field processing of foods: a review. J Food Prot 62:1088e1096

    Google Scholar 

  • Khanal SN, Anand S, Muthukumarappan K (2014) Evaluation of high-intensity ultrasonication for the inactivation of endospores of 3 Bacillus species in nonfat milk. J Dairy Sci 97(10):5952–5963

    CAS  PubMed  Google Scholar 

  • Kim HY, Kim SH, Choi MJ, Min SG, Kwak HS (2008) The effect of high pressure-low temperature treatment on physicochemical properties in milk. J Dairy Sci 91(11):4176–4182. https://doi.org/10.3168/jds.2007-0883

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Yong HI, Park S, Kim K, Choe W, Jo C (2015) Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. Food Control 47:451–456

    CAS  Google Scholar 

  • Knorr D (1995) Hydrostatic pressure treatment of food: microbiology. In: Gould GW (ed) New methods of food preservation. Blackie Academic and Professional, London, pp 159–175

    Google Scholar 

  • Kumar P, Sharma N, Ranjan R, Kumar S, Bhat ZF, Jeong DK (2013) Perspective of membrane technology in dairy industry: a review. Asian Australas J Anim Sci 26(9):1347

    PubMed  PubMed Central  Google Scholar 

  • Lateef A, Oloke JK, Prapulla SG (2007) The effect of ultrasonication on the release of fructosyltransferase from Aureobasidium pullulans CFR 77. Enzym Microb Technol 40:1067–1070

    CAS  Google Scholar 

  • Lawrence ND, Kentish SE, O’Connor AJ, Barber AR, Stevens GW (2008) Microfiltration of skim milk using polymeric membranes for casein concentrate manufacture. Sep Purif Technol 60(3):237–244

    CAS  Google Scholar 

  • Lee HO, Luan H, Daut DG (1992) Use of an ultrasonic technique to evaluate the rheological properties of cheese and dough. J Food Eng 16:127–150

    Google Scholar 

  • Liao X, Liu D, Xiang Q, Ahn J, Chen S, Ye X, Ding T (2017) Inactivation mechanisms of non-thermal plasma on microbes: a review. Food Control 75:83–91

    CAS  Google Scholar 

  • Majid I, Nayik GA, Nanda V (2015) Ultrasonication and food technology: a review. Cogent Food Agric 1(1):1071022

    Google Scholar 

  • Mason TJ, Chemat F, Vinatoru M (2011) The extraction of natural products using ultrasound or microwaves. Curr Org Chem 15:237–247

    CAS  Google Scholar 

  • Maubois JL (2002) Membrane microfiltration: a tool for a new approach in dairy technology. Aust J Dairy Technol 57(2):92

    Google Scholar 

  • Misra NN, Pankaj SK, Segat A, Ishikawa K (2016) Cold plasma interactions with enzymes in foods and model systems. Trends Food Sci Technol 55:39–47

    CAS  Google Scholar 

  • Misra NN, Koubaa M, Roohinejad S, Juliano P, Alpas H, Inácio RS, Saraiva JA, Barba FJ (2017) Landmarks in the historical development of twenty-first century food processing technologies. Food Res Int 97:318–339

    CAS  PubMed  Google Scholar 

  • Moreau M, Orange N, Feuilloley MGJ (2008) Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv 26:610–617

    CAS  PubMed  Google Scholar 

  • Mosqueda-Melgar J, Elez-Martínez P, Raybaudi-Massilia RM, Martín-Belloso O (2008) Effects of pulsed electric fields on pathogenic microorganisms of major concern in fluid foods: a review. Crit Rev Food Sci Nutr 48:747–759

    PubMed  Google Scholar 

  • Mulet A, Benedito J, Bon J, Rossello C (1999) Ultrasonic velocity in cheddar cheese as affected by temperature. J Food Sci 64(6):1038–1041

    CAS  Google Scholar 

  • Ohlsson T, Bengtsson N (2002) Minimal processing technologies in the food industry. Woodhead Publ Ltd, Cambridge

    Google Scholar 

  • Pankaj SK, Shi H, Kenner KM (2018) A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci Technol 71:73–83

    CAS  Google Scholar 

  • Phan KTK, Phan HT, Brennan CS, Phimolsiripol Y (2017) Nonthermal plasma for pesticide and microbial elimination on fruits and vegetables: an overview. Int J Food Sci Technol 52:2127–2137

    CAS  Google Scholar 

  • Pierre A, Fauquant J, Le Graet Y, Piot M, Maubois JL (1992) Préparation de phosphocaséinate natif par microfiltration sur membrane. Lait 72(5):461–474

    CAS  Google Scholar 

  • Rasanayagam V, Balasubramaniam VM, Ting E, Sizer CE, Bush C, Anderson C (2003) Compression heating of selected fatty food materials during high-pressure processing. J Food Sci 68(1):254–259

    CAS  Google Scholar 

  • Rodriguez E, Arques JL, Nuñez M, Gaya P, Medina M, Nun M (2005) Combined effect of high-pressure treatments and bacteriocin-producing lactic acid bacteria on inactivation of escherichia coli O157 : H7 in raw-milk cheese. Appl Environ Microbiol 71(7):3399–3404. https://doi.org/10.1128/AEM.71.7.3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafroth K, Fragnière C, Bachmann H (2005) Herstellung von Kase aus mikrofiltrierter, konzentrierter Milch. Deutsche Milchwirtschaft 56(20):861

    Google Scholar 

  • Schlüter O, Fröhling A (2014) Cold plasma for bioefficient food processing. In: Batt CA, Tortorello M-L (eds) Encyclopedia of food microbiology, vol 2. Academic Press, London, pp 948–953

    Google Scholar 

  • Shamsi K, Versteeg C, Sherkat F, Wan J (2008) Alkaline phosphatase and microbial inactivation by pulsed electric field in bovine milk. Innov Food Sci Emerg Technol 9:217e223

    Google Scholar 

  • Song HPB, Kim JH, Choe S, Jung SY, Moon W, Choe CJ (2009) Evaluation of atmospheric pressure plasma to improve the safety of sliced cheese and ham inoculated by 3-strain cocktail Listeria monocytogenes. Food Microbiol 26:432–436

    CAS  PubMed  Google Scholar 

  • Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21:323–331

    CAS  Google Scholar 

  • Thirumdas R, Sarangapani C, Annapure US (2015) Cold plasma: a novel non-thermal technology for food processing. Food Biophys 10:1–11

    Google Scholar 

  • Tolouie H, Hashemi M, Mohammadifar AM, Ghomi H (2017) Cold atmospheric plasma manipulation of proteins in food systems. Crit Rev Food Sci Nutr 58(15):2583–2597. https://doi.org/10.1080/10408398.2017.1335689

    Article  CAS  PubMed  Google Scholar 

  • Trujillo AJ, Capellas M, Saldo J, Gervilla R, Guamis B (2002) Applications of high-hydrostatic pressure on milk and dairy products: a review. Innov Food Sci Emerg Technol 3(4):295–307. https://doi.org/10.1016/S1466-8564(02)00049-8

    Article  Google Scholar 

  • van Reis R, Zydney A (2007) Erratum to “Bioprocess membrane technology” [J. Membr. Sci. 297 (2007) 16–50]. J Membr Sci 1(302):271

    Google Scholar 

  • Vachon JF, Kheadr EE, Giasson J, Paquin P, Fliss I (2002) Inactivation of food-borne pathogens in milk using dynamic high pressure. J Food Prot 65:345–352

    CAS  PubMed  Google Scholar 

  • Winston Ho WS, Sirkar KK (1992) In: Winston Ho WS, Sirkar KK (eds) Membrane handbook. Van Nostrand Reinhold, New York, pp 3–16

    Google Scholar 

  • Yusaf T, Al-Juboori RA (2014) Alternative methods of microorganism disruption for agricultural applications. Appl Energy 114:909–923

    Google Scholar 

  • Zhang QH, Barbosa-Cánovas GV, Swanson BG (1995) Engineering aspects of pulsed electric field pasteurization. J Food Eng 25:261–281

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sweta Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, S., Mobeen, A., Jan, K., Bashir, K., Azad, Z.R.A.A. (2019). Emerging Technologies in Dairy Processing: Present Status and Future Potential. In: Malik, A., Erginkaya, Z., Erten, H. (eds) Health and Safety Aspects of Food Processing Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-24903-8_6

Download citation

Publish with us

Policies and ethics